Skip to main content

Advertisement

Log in

Inter-estuarine Variation in Otolith Chemistry in a Large Coastal Predator: a Viable Tool for Identifying Coastal Nurseries?

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Coastal estuaries provide essential juvenile habitat for many commercially and recreationally important fish, which may move between estuarine and coastal environments throughout their life. Identifying the most important estuarine nurseries that contribute to the broader stock can support targeted management of juvenile and spawning populations. The objective of this study was to (1) compare chemical fingerprints within sagittal otoliths of juvenile Mulloway (Argyrosomus japonicus) sampled from putative south-eastern Australian nurseries, (2) assess their potential as natural tags to distinguish nursery grounds for the broader coastal Mulloway stock and (3) assess the viability of otolith chemistry as a fisheries management tool when limited to opportunistic, fisheries-dependant, otolith sample collection from by-catch. Otoliths from juvenile Mulloway (0 to 3 years, 4 to 44.8 cm total length) were obtained from 8 major estuaries and 2 inshore ocean locations along coastal south-eastern New South Wales, Australia, from April 2015 to July 2018. Concentrations of Sr, Ba, Mg, Mn and Li in the otolith region corresponding to the juvenile nursery stage were determined using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The element to Ca ratios of fish from coastal estuaries differed significantly among collection areas, based upon multivariate elemental fingerprints, with some exceptions. When the otoliths of fish were analysed in a multinomial logistic regression (MLR) classifier, there was an overall mean allocation success of 59% to the estuary of capture. This study highlights the use of otolith ‘fingerprints’ as natural tags in Mulloway, and contributes to progressive research in environmental reconstruction applications of otolith chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. With the exception of Georges River, which is not a commercially fished estuary; samples for this estuary were obtained from independent mesh net sampling.

References

  • Able, K.W. 2005. A re-examination of fish estuarine dependence: evidence for connectivity between estuarine and ocean habitats. Estuarine, Coastal and Shelf Science 64 (1): 5–17.

    Article  Google Scholar 

  • Archangi, B. 2008. Levels and patterns of genetic diversity in wild and cultured populations of mulloway (Argyrosomus japonicus) using mitochondrial DNA and microsatellites. Queensland University of Technology.

  • Barnes, T.C., and B.M. Gillanders. 2013. Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions. Canadian Journal of Fisheries and Aquatic Sciences 70 (8): 1159–1166.

    Article  CAS  Google Scholar 

  • Barnes, T.C., C. Junge, S.A. Myers, M.D. Taylor, P.J. Rogers, G.J. Ferguson, J.A. Lieschke, S.C. Donnellan, and B.M. Gillanders. 2016. Population structure in a wide-ranging coastal teleost (Argyrosomus japonicus, Sciaenidae) reflects marine biogeography across southern Australia. Marine and Freshwater Research 67 (8): 1103–1113.

    Article  Google Scholar 

  • Barnes, T.C., P.J. Rogers, Y. Wolf, A. Madonna, D. Holman, G.J. Ferguson, W. Hutchinson, A. Loisier, D. Sortino, and M. Sumner. 2019. Dispersal of an exploited demersal fish species (Argyrosomus japonicus, Sciaenidae) inferred from satellite telemetry. Marine Biology 166 (10): 125.

    Article  Google Scholar 

  • Bath, G.E., S.R. Thorrold, C.M. Jones, S.E. Campana, J.W. McLaren, and J.W. Lam. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 64 (10): 1705–1714.

    Article  CAS  Google Scholar 

  • Beck, M.W., K.L. Heck, K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, C.G. Hays, K. Hoshino, T.J. Minello, R.J. Orth, P.F. Sheridan, and M.R. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51 (8): 633–641.

    Article  Google Scholar 

  • Becker, A., A.K. Whitfield, P.D. Cowley, and V.J. Cole. 2017. Does water depth influence size composition of estuary-associated fish? Distributions revealed using mobile acoustic-camera transects along the channel of a small shallow estuary. Marine and Freshwater Research 68 (11): 2163–2169.

    Article  Google Scholar 

  • Bell, J.D., K.M. Leber, H.L. Blankenship, N.R. Loneragan, and R. Masuda. 2008. A new era for restocking, stock enhancement and sea ranching of coastal fisheries resources. Reviews in Fisheries Science 16 (1-3): 1–9.

    Article  Google Scholar 

  • Bertelli, C.M., and R.K.F. Unsworth. 2014. Protecting the hand that feeds us: seagrass (Zostera marina) serves as commercial juvenile fish habitat. Marine Pollution Bulletin 83 (2): 425–429.

    Article  CAS  Google Scholar 

  • Bode, M., L. Bode, and P.R. Armsworth. 2006. Larval dispersal reveals regional sources and sinks in the Great Barrier Reef. Marine Ecology Progress Series 308: 17–25.

    Article  Google Scholar 

  • Bourel, M., and A.M. Segura. 2018. Multiclass classification methods in ecology. Ecological Indicators 85: 1012–1021.

    Article  Google Scholar 

  • Bourret, S.L., B.P. Kennedy, C.C. Caudill, and P.M. Chittaro. 2014. Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha. Journal of Fish Biology 85 (5): 1507–1525.

    Article  CAS  Google Scholar 

  • Boys, C.A., and B. Pease. 2017. Opening the floodgates to the recovery of nektonic assemblages in a temperate coastal wetland. Marine and Freshwater Research 68 (6): 1023–1035.

    Article  Google Scholar 

  • Broadhurst, M., and S. Kennelly. 1994. Reducing the by-catch of juvenile fish (mulloway Argyrosomus hololepidotus) using square-mesh panels in codends in the Hawkesbury River prawn-trawl fishery, Australia. Fisheries Research 19 (3-4): 321–331.

    Article  Google Scholar 

  • Brophy, D., T.E. Jeffries, and B.S. Danilowicz. 2004. Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Marine Biology 144 (4): 779–786.

    Article  CAS  Google Scholar 

  • Brown, R.J., and K.P. Severin. 2009. Otolith chemistry analyses indicate that water Sr: Ca is the primary factor influencing otolith Sr: Ca for freshwater and diadromous fish but not for marine fish. Canadian Journal of Fisheries and Aquatic Sciences 66 (10): 1790–1808.

    Article  CAS  Google Scholar 

  • Bureau of Meteorology. 2019. Climate data online. http://www.bom.gov.au/climate/data/: accessed 11 September 2019.

  • Campana, S. 2013. Otolith elemental as a natural marker of fish stocks. Stock Identification Methods: Applications in Fishery Science: 227–245.

  • Campana, S.E., and S.R. Thorrold. 2001. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences 58 (1): 30–38.

    Article  Google Scholar 

  • Campana, S.E., A.J. Fowler, and C.M. Jones. 1994. Otolith elemental fingerprinting for stock identification of Atlantic Cod (Gadus morhua) using laser ablation ICPMS. Canadian Journal of Fisheries and Aquatic Sciences 51 (9): 1942–1950.

    Article  Google Scholar 

  • Campana, S.E., A. Valentin, J.-M. Sévigny, and D. Power. 2007. Tracking seasonal migrations of redfish (Sebastes spp.) in and around the Gulf of St. Lawrence using otolith elemental fingerprints. Canadian Journal of Fisheries and Aquatic Sciences 64 (1): 6–18.

    Article  CAS  Google Scholar 

  • Cooper, L., J. McClelland, R. Holmes, P. Raymond, J. Gibson, C. Guay, and B. Peterson. 2008. Flow-weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers. Geophysical Research Letters 35.

  • Crook, D.A., K. Lacksen, A.J. King, D.J. Buckle, S.J. Tickell, J.D. Woodhead, R. Maas, S.A. Townsend, and M.M. Douglas. 2016. Temporal and spatial variation in strontium in a tropical river: Implications for otolith chemistry analyses of fish migration. Canadian Journal of Fisheries and Aquatic Sciences 74: 533–545.

    Article  CAS  Google Scholar 

  • Dahlgren, C.P., G.T. Kellison, A.J. Adams, B.M. Gillanders, M.S. Kendall, C.A. Layman, J.A. Ley, I. Nagelkerken, and J.E. Serafy. 2006. Marine nurseries and effective juvenile habitats: concepts and applications. Marine Ecology Progress Series 312: 291–295.

    Article  Google Scholar 

  • De Vries, M.C., B.M. Gillanders, and T.S. Elsdon. 2005. Facilitation of barium uptake into fish otoliths: influence of strontium concentration and salinity. Geochimica et Cosmochimica Acta 69 (16): 4061–4072.

    Article  CAS  Google Scholar 

  • Dias, P.C. 1996. Sources and sinks in population biology. Trends in Ecology & Evolution 11 (8): 326–330.

    Article  CAS  Google Scholar 

  • DiBacco, C., and L.A. Levin. 2000. Development and application of elemental fingerprinting to track the dispersal of marine invertebrate larvae. Limnology and Oceanography 45 (4): 871–880.

    Article  CAS  Google Scholar 

  • Disspain, M.C.F., S. Ulm, and B.M. Gillanders. 2016. Otoliths in archaeology: methods, applications and future prospects. Journal of Archaeological Science-Reports 6: 623–632.

    Article  Google Scholar 

  • Dolbeth, M., F. Martinho, I. Viegas, H. Cabral, and M. Pardal. 2008. Estuarine production of resident and nursery fish species: conditioning by drought events? Estuarine, Coastal and Shelf Science 78 (1): 51–60.

    Article  Google Scholar 

  • Dorval, E., C.M. Jones, R. Hannigan, and J.v. Montfrans. 2007. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Canadian Journal of Fisheries and Aquatic Sciences 64 (3): 411–424.

  • Doubleday, Z.A., C. Izzo, S.H. Woodcock, and B.M. Gillanders. 2013. Relative contribution of water and diet to otolith chemistry in freshwater fish. Aquatic Biology 18 (3): 271–280.

    Article  Google Scholar 

  • Earl, J., D. Fairclough, J. Staunton-Smith, and J. Hughes. 2019. Mulloway (Argyrosomus japonicus). In In status of key Australian fish stocks 2018. Canberra: Fisheries Research and Development Corporation.

    Google Scholar 

  • Elsdon, T.S., and B.M. Gillanders. 2002. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences 59 (11): 1796–1808.

    Article  CAS  Google Scholar 

  • Elsdon, T.S., and B.M. Gillanders. 2003. Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Marine Ecology Progress Series 260: 263–272.

    Article  CAS  Google Scholar 

  • Elsdon, T., and B. Gillanders. 2005a. Strontium incorporation into calcified structures: separating the effects of ambient water concentration and exposure time. Marine Ecology Progress Series 285: 233–243.

  • Elsdon, T.S., and B.M. Gillanders. 2005b. Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Canadian Journal of Fisheries and Aquatic Sciences 62 (5): 1143–1152.

    Article  CAS  Google Scholar 

  • Elsdon, T.S., B.K. Wells, S.E. Campana, B.M. Gillanders, C.M. Jones, K.E. Limburg, D.H. Secor, S.R. Thorrold, and B.D. Walther. 2008. Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology: An Annual Review 46: 297–330.

    Google Scholar 

  • Elsenbeer, H., A. Lack, and K. Cassel. 1995. Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, western Amazonia. Water Resources Research 31 (12): 3051–3058.

    Article  CAS  Google Scholar 

  • Farmer, B. 2008. Comparisons of the biological and genetic characteristics of the Mulloway Argyrosomus japonicus (Sciaenidae) in different regions of Western Australia. Murdoch University.

  • Ferguson, G.J., T.M. Ward, and B.M. Gillanders. 2011. Otolith shape and elemental composition: Complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fisheries Research 110 (1): 75–83.

    Article  Google Scholar 

  • Fowler, A.M., S.M. Smith, D.J. Booth, and J. Stewart. 2016. Partial migration of grey mullet (Mugil cephalus) on Australia’s east coast revealed by otolith chemistry. Marine Environmental Research 119: 238–244.

    Article  CAS  Google Scholar 

  • Gahagan, B.I., J.C. Vokoun, G.W. Whitledge, and E.T. Schultz. 2012. Evaluation of otolith microchemistry for identifying natal origin of anadromous river herring in Connecticut. Marine and Coastal Fisheries 4 (1): 358–372.

    Article  Google Scholar 

  • Geffen, A.J., R.D.M. Nash, and M. Dickey-Collas. 2011. Characterization of herring populations west of the British Isles: an investigation of mixing based on otolith microchemistry. ICES Journal of Marine Science 68 (7): 1447–1458.

    Article  Google Scholar 

  • Gibb, F.M., T. Régnier, K. Donald, and P.J. Wright. 2017. Connectivity in the early life history of sandeel inferred from otolith microchemistry. Journal of Sea Research 119: 8–16.

    Article  Google Scholar 

  • Gillanders, B.M. 2002a. Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Marine Ecology Progress Series 240: 215–223.

    Article  Google Scholar 

  • Gillanders, B.M. 2002b. Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Canadian Journal of Fisheries and Aquatic Sciences 59 (4): 669–679.

    Article  CAS  Google Scholar 

  • Gillanders, B.M. 2005. Otolith chemistry to determine movements of diadromous and freshwater fish. Aquatic Living Resources 18 (3): 291–300.

    Article  CAS  Google Scholar 

  • Gillanders, B.M., and M.J. Kingsford. 1996. Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Marine Ecology Progress Series 141: 13–20.

    Article  Google Scholar 

  • Gillanders, B.M., and M.J. Kingsford. 2000. Elemental fingerprints of otoliths of fish may distinguish estuarine ‘nursery’ habitats. Marine Ecology Progress Series 201: 273–286.

    Article  CAS  Google Scholar 

  • Gillanders, B.M., K.W. Able, J.A. Brown, D.B. Eggleston, and P.F. Sheridan. 2003. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Marine Ecology Progress Series 247: 281–295.

    Article  Google Scholar 

  • Gillanders, B.M., C. Izzo, Z.A. Doubleday, and Q. Ye. 2015. Partial migration: growth varies between resident and migratory fish. Biology Letters 11 (3): 20140850.

    Article  Google Scholar 

  • Gomes, I., L.G. Peteiro, R. Albuquerque, R. Nolasco, J. Dubert, S.E. Swearer, and H. Queiroga. 2016. Wandering mussels: using natural tags to identify connectivity patterns among marine protected areas. Marine Ecology Progress Series 552: 159–176.

    Article  CAS  Google Scholar 

  • Grammer, G.L., J.R. Morrongiello, C. Izzo, P.J. Hawthorne, J.F. Middleton, and B.M. Gillanders. 2017. Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecological Monographs 87 (3): 487–507.

    Article  Google Scholar 

  • Gray, C.A., and V.C. McDonall. 1993. Distribution and growth of juvenile mulloway, (Argyrosomus hololepidotus) (Pisces: Sciaenidae), in the Hawkesbury River, South-Eastern Australia. Marine and Freshwater Research 44 (3): 401–409.

    Article  Google Scholar 

  • Griffiths, M.H. 1996. Life history of the dusky kob Argyrosomus japonicus (Sciaenidae) off the east coast of South Africa. South African Journal of Marine Science-Suid-Afrikaanse Tydskrif Vir Seewetenskap 17 (1): 135–154.

    Article  Google Scholar 

  • Griffiths, M., and C. Attwood. 2005. Do dart tags suppress growth of dusky kob Argyrosomus japonicus? African Journal of Marine Science 27 (2): 505–508.

    Article  Google Scholar 

  • Grimes, C.B., and M.J. Kingsford. 1996. How do riverine plumes of different sizes influence fish larvae: do they enhance recruitment? Marine and Freshwater Research 47 (2): 191–208.

    Article  Google Scholar 

  • Gunter, G. 1967. Some relationships of estuaries to the fisheries of the Gulf of Mexico. In Estuaries, ed. G.H. Lauff, 621–638. Washington, DC: American Association for the Advancement of Science.

    Google Scholar 

  • Hall, D. 1984. The Coorong: biology of the major fish species and fluctuations in catch rates 1976-1983. Safic 8: 3–17.

    Google Scholar 

  • Hall, D.A. 1986. An assessment of the mulloway (Argyrosomus hololepidotus) fishery in South Australia with particular reference to the Coorong Lagoon: a discussion paper: Department of Fisheries, South Australia.

  • Helsel, D.R. 2006. Fabricating data: How substituting values for nondetects can ruin results, and what can be done about it. Chemosphere 65 (11): 2434–2439.

    Article  CAS  Google Scholar 

  • Hsieh, Y., J.-C. Shiao, S.-w. Lin, and Y. Iizuka. 2019. Quantitative reconstruction of salinity history by otolith oxygen stable isotopes: an example of a euryhaline fish Lateolabrax japonicus. Rapid Communications in Mass Spectrometry 33 (16): 1344–1354.

    Article  CAS  Google Scholar 

  • Hüssy, K., K. Limburg, H. De Pontual, O. Thomas, P. Cook, Y. Heimbrand, M. Blass, and A. Sturrock. 2020. Trace element patterns in otoliths: the role of biomineralization. Reviews in Fisheries Science & Aquaculture: 1–33.

  • Izzo, C., C. Huveneers, M. Drew, C.J.A. Bradshaw, S.C. Donnellan, and B.M. Gillanders. 2016. Vertebral chemistry demonstrates movement and population structure of bronze whaler. Marine Ecology Progress Series 556: 195–207.

    Article  CAS  Google Scholar 

  • Izzo, C., P. Reis-Santos, and B.M. Gillanders. 2018. Otolith chemistry does not just reflect environmental conditions: a meta-analytic evaluation. Fish and Fisheries 19 (3): 441–454.

    Article  Google Scholar 

  • Lazartigues, A.V., S. Plourde, J.J. Dodson, O. Morissette, P. Ouellet, and P. Sirois. 2016. Determining natal sources of capelin in a boreal marine park using otolith microchemistry. ICES Journal of Marine Science 73 (10): 2644–2652.

    Article  Google Scholar 

  • Limburg, K.E., C. Olson, Y. Walther, D. Dale, C.P. Slomp, and H. Høie. 2011. Tracking Baltic hypoxia and cod migration over millennia with natural tags. Proceedings of the National Academy of Sciences of the United States of America 108 (22): E177–E182.

    Article  Google Scholar 

  • Limburg, K.E., M.J. Wuenschel, K. Hüssy, Y. Heimbrand, and M. Samson. 2018. Making the otolith magnesium chemical calendar-clock tick: plausible mechanism and empirical evidence. Reviews in Fisheries Science & Aquaculture 26 (4): 479–493.

    Article  Google Scholar 

  • Litvin, S.Y., M.P. Weinstein, M. Sheaves, and I. Nagelkerken. 2018. What makes nearshore habitats nurseries for nekton? An emerging view of the nursery role hypothesis. Estuaries and Coasts 41 (6): 1539–1550.

    Article  Google Scholar 

  • Liu, O.R., K.M. Kleisner, S.L. Smith, and J.P. Kritzer. 2018. The use of spatial management tools in rights-based groundfish fisheries. Fish and Fisheries 19 (5): 821–838.

    Article  Google Scholar 

  • Lorenzen, K. 2008. Understanding and managing enhancement fisheries systems. Reviews in Fisheries Science 16 (1-3): 10–23.

    Article  Google Scholar 

  • Marriott, A., I. McCarthy, A. Ramsay, and S. Chenery. 2016. Discriminating nursery grounds of juvenile plaice (Pleuronectes platessa) in the south-eastern Irish Sea using otolith microchemistry. Marine Ecology Progress Series 546: 183–195.

    Article  CAS  Google Scholar 

  • McMillan, M., C. Izzo, B. Wade, and B. Gillanders. 2017. Elements and elasmobranchs: hypotheses, assumptions and limitations of elemental analysis. Journal of Fish Biology 90 (2): 559–594.

    Article  CAS  Google Scholar 

  • Miller, J.A. 2011. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions. Journal of Experimental Marine Biology and Ecology 405 (1-2): 42–52.

    Article  CAS  Google Scholar 

  • Milton, D.A., and S.R. Chenery. 2001. Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). Journal of Experimental Marine Biology and Ecology 264 (1): 47–65.

    Article  CAS  Google Scholar 

  • Miyan, K., M.A. Khan, D.K. Patel, S. Khan, and S. Prasad. 2016. Otolith fingerprints reveal stock discrimination of Sperata seenghala inhabiting the Gangetic river system. Ichthyological Research 63 (2): 294–301.

    Article  Google Scholar 

  • Mohan, J.A., R.A. Rulifson, D.R. Corbett, and N.M. Halden. 2012. Validation of oligohaline elemental otolith signatures of striped bass by use of in situ caging experiments and water chemistry. Marine and Coastal Fisheries 4 (1): 57–70.

    Article  Google Scholar 

  • Nagelkerken, I., M. Sheaves, R. Baker, and R.M. Connolly. 2015. The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries 16 (2): 362–371.

    Article  Google Scholar 

  • NSW Department of Planning Industry and Environment. 2020. SEED The Central Resource for Sharing and Enabling Environmental Data in NSW. https://datasets.seed.nsw.gov.au/dataset/estuary-catchment-streamflow-and-surface-runoff-1975-20078b0ae/resource/914d995f-c890-4847-bf5d-bb29a297b46d: accessed 6 July 2020.

  • Paton, C., J. Hellstrom, B. Paul, J. Woodhead, and J. Hergt. 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26 (12): 2508–2518.

    Article  CAS  Google Scholar 

  • Potter, I., and G. Hyndes. 1999. Characteristics of the ichthyofaunas of southwestern Australian estuaries, including comparisons with holarctic estuaries and estuaries elsewhere in temperate Australia: a review. Australian Journal of Ecology 24 (4): 395–421.

    Article  Google Scholar 

  • Pursche, A.R., I.M. Suthers, and M.D. Taylor. 2013. Post-release monitoring of site and group fidelity in acoustically tagged stocked fish. Fisheries Management and Ecology 20 (5): 445–453.

    Article  Google Scholar 

  • R Development Core Team. 2010. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Raoult, V., T.F. Gaston, and M.D. Taylor. 2018. Habitat–fishery linkages in two major south-eastern Australian estuaries show that the C4 saltmarsh plant Sporobolus virginicus is a significant contributor to fisheries productivity. Hydrobiologia 811 (1): 221–238.

    Article  Google Scholar 

  • Raybaud, V., S. Tambutté, C. Ferrier-Pagès, S. Reynaud, A.A. Venn, É. Tambutté, P. Nival, and D. Allemand. 2017. Computing the carbonate chemistry of the coral calcifying medium and its response to ocean acidification. Journal of Theoretical Biology 424: 26–36.

    Article  CAS  Google Scholar 

  • Reis-Santos, P., B.M. Gillanders, S.E. Tanner, R.P. Vasconcelos, T.S. Elsdon, and H.N. Cabral. 2012. Temporal variability in estuarine fish otolith elemental fingerprints: implications for connectivity assessments. Estuarine, Coastal and Shelf Science 112: 216–224.

    Article  CAS  Google Scholar 

  • Reis-Santos, P., S.E. Tanner, R.P. Vasconcelos, T.S. Elsdon, H.N. Cabral, and B.M. Gillanders. 2013. Connectivity between estuarine and coastal fish populations: contributions of estuaries are not consistent over time. Marine Ecology Progress Series 491: 177–186.

    Article  Google Scholar 

  • Reis-Santos, P., R.P. Vasconcelos, S.E. Tanner, V.F. Fonseca, H.N. Cabral, and B.M. Gillanders. 2018. Extrinsic and intrinsic factors shape the ability of using otolith chemistry to characterize estuarine environmental histories. Marine Environmental Research 140: 332–341.

    Article  CAS  Google Scholar 

  • Rönnbäck, P. 1999. The ecological basis for economic value of seafood production supported by mangrove ecosystems. Ecological Economics 29 (2): 235–252.

    Article  Google Scholar 

  • Rose, K.A., S. Sable, D.L. DeAngelis, S. Yurek, J.C. Trexler, W. Graf, and D.J. Reed. 2015. Proposed best modeling practices for assessing the effects of ecosystem restoration on fish. Ecological Modelling 300: 12–29.

    Article  Google Scholar 

  • Roy, P.S., R.J. Williams, A.R. Jones, I. Yassini, P.J. Gibbs, B. Coates, R.J. West, P.R. Scanes, J.P. Hudson, and S. Nichol. 2001. Structure and function of south-east Australian estuaries. Estuarine Coastal and Shelf Science 53 (3): 351–384.

    Article  Google Scholar 

  • Ruas, L.C., and A.M. Vaz-dos-Santos. 2017. Age structure and growth of the rough scad, Trachurus lathami (Teleostei: Carangidae), in the southeastern Brazilian bight. Zoologia 34: 11.

    Article  Google Scholar 

  • Sakabe, R., and J.M. Lyle. 2010. The influence of tidal cycles and freshwater inflow on the distribution and movement of an estuarine resident fish Acanthopagrus butcheri. Journal of Fish Biology 77 (3): 643–660.

    CAS  Google Scholar 

  • Sanchez-Jerez, P., B. Gillanders, and M. Kingsford. 2002. Spatial variability of trace elements in fish otoliths: comparison with dietary items and habitat constituents in seagrass meadows. Journal of Fish Biology 61 (3): 801–821.

    Article  CAS  Google Scholar 

  • Schaffler, J., T. Miller, and C. Jones. 2014. Spatial and temporal variation in otolith chemistry of juvenile Atlantic Menhaden in the Chesapeake Bay. Transactions of the American Fisheries Society 143(4): 1061–1071

  • Schilling, H.T., P. Reis-Santos, J.M. Hughes, J.A. Smith, J.D. Everett, J. Stewart, B.M. Gillanders, and I.M. Suthers. 2018. Evaluating estuarine nursery use and life history patterns of Pomatomus saltatrix in eastern Australia. Marine Ecology Progress Series. 598: 187–199.

    Article  Google Scholar 

  • Secor, D.H., and J.R. Rooker. 2000. Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Research 46 (1-3): 359–371.

    Article  Google Scholar 

  • Silberschneider, V., and C.A. Gray. 2005. Arresting the decline of the commercial and recreational fisheries for mulloway (Argyrosomus japonicus). NSW DPI Fisheries Final Report Series No. 82. New South Wales Fisheries, Cronulla.

  • Silberschneider, V., and C. Gray. 2008. Synopsis of biological, fisheries and aquaculture-related information on mulloway Argyrosomus japonicus (Pisces: Sciaenidae), with particular reference to Australia. Journal of Applied Ichthyology 24: 7–17.

    Google Scholar 

  • Stewart, J., J.M. Hughes, C. Stanley, and A.M. Fowler. 2020. The influence of rainfall on recruitment success and commercial catch for the large sciaenid, Argyrosomus japonicus, in eastern Australia. Marine Environmental Research 157: 104924.

    Article  CAS  Google Scholar 

  • Sturrock, A.M., C.N. Trueman, A.M. Darnaude, and E. Hunter. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology 81 (2): 766–795.

    Article  CAS  Google Scholar 

  • Sturrock, A.M., C.N. Trueman, J.A. Milton, C.P. Waring, M.J. Cooper, and E. Hunter. 2014. Physiological influences can outweigh environmental signals in otolith microchemistry research. Marine Ecology Progress Series 500: 245–264.

    Article  CAS  Google Scholar 

  • Taddese, F., M.R. Reid, and G.P. Closs. 2019. Direct relationship between water and otolith chemistry in juvenile estuarine triplefin Forsterygion nigripenne. Fisheries Research 211: 32–39.

    Article  Google Scholar 

  • Tanner, S.E., P. Reis-Santos, and H.N. Cabral. 2016. Otolith chemistry in stock delineation: a brief overview, current challenges and future prospects. Fisheries Research 173: 206–213.

    Article  Google Scholar 

  • Taylor, M., S. Laffan, S. Fielder, and I. Suthers. 2006. Key habitat and home range of mulloway Argyrosomus japonicus in a south-east Australian estuary: finding the estuarine niche to optimise stocking. Marine Ecology Progress Series 328: 237–247.

    Article  Google Scholar 

  • Taylor, M.D., D.E. van der Meulen, M.C. Ives, C.T. Walsh, I.V. Reinfelds, and C.A. Gray. 2014. Shock, stress or signal? Implications of freshwater flows for a top-level estuarine predator. PLOS ONE 9.

  • Taylor, M.D., T.F. Gaston, and V. Raoult. 2018. The economic value of fisheries harvest supported by saltmarsh and mangrove productivity in two Australian estuaries. Ecological Indicators 84: 701–709.

    Article  Google Scholar 

  • Thomas, O.R.B., and S.E. Swearer. 2019. Otolith biochemistry—a review. Reviews in Fisheries Science & Aquaculture 27 (4): 458–489.

    Article  Google Scholar 

  • Thomas, O.R., K. Ganio, B.R. Roberts, and S.E. Swearer. 2017. Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics 9 (3): 239–249.

    Article  CAS  Google Scholar 

  • Thorrold, S.R., C.M. Jones, P.K. Swart, and T.E. Targett. 1998. Accurate classification of juvenile weakfish Cynoscion regalis to estuarine nursery areas based on chemical signatures in otoliths. Marine Ecology Progress Series 173: 253–265.

    Article  CAS  Google Scholar 

  • Thorrold, S.R., C. Latkoczy, P.K. Swart, and C.M. Jones. 2001. Natal homing in a marine fish metapopulation. Science 291 (5502): 297–299.

    Article  CAS  Google Scholar 

  • Trueman, C.N., and K. St John Glew. 2019. Chapter 6 - Isotopic tracking of marine animal movement. In Tracking animal migration with stable isotopes, ed. K.A. Hobson and L.I. Wassenaar, 2nd ed., 137–172. Academic Press.

  • Tsukamoto, K., and T. Arai. 2001. Facultative catadromy of the eel Anguilla japonica between freshwater and seawater habitats. Marine Ecology Progress Series 220: 265–276.

    Article  Google Scholar 

  • Vasconcelos, R.P., P. Reis-Santos, M.J. Costa, and H.N. Cabral. 2011. Connectivity between estuaries and marine environment: integrating metrics to assess estuarine nursery function. Ecological Indicators 11 (5): 1123–1133.

    Article  Google Scholar 

  • Walther, B.D. 2019. The art of otolith chemistry: interpreting patterns by integrating perspectives. Marine and Freshwater Research 70 (12): 1643.

    Article  CAS  Google Scholar 

  • Walther, B., and K. Limburg. 2012. The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology 81 (2): 796–825.

    Article  CAS  Google Scholar 

  • Walther, B.D., and M.K. Nims. 2015. Spatiotemporal variation of trace elements and stable isotopes in subtropical estuaries: I. freshwater endmembers and mixing curves. Estuaries and Coasts 38 (3): 754–768.

    Article  CAS  Google Scholar 

  • Walther, B.D., and S.R. Thorrold. 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series 311: 125–130.

    Article  CAS  Google Scholar 

  • Walther, B.D., M.J. Kingsford, and M.T. McCulloch. 2013. Environmental records from Great Barrier Reef corals: inshore versus offshore drivers. PLoS One 8 (10): e77091.

    Article  CAS  Google Scholar 

  • Wells, R.J.D., M.J. Kinney, S. Kohin, H. Dewar, J.R. Rooker, and O.E. Snodgrass. 2015. Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific. ICES Journal of Marine Science 72 (7): 2118–2127.

    Article  Google Scholar 

  • West, R.J. 1992. Mulloway. The Australian Anglers Fishing World 1992: 84–85.

    Google Scholar 

  • Wood, S.N. 2017. Generalized additive models: an introduction with R. Chapman and Hall/CRC.

  • Yamashita, Y., T. Otake, and H. Yamada. 2000. Relative contributions from exposed inshore and estuarine nursery grounds to the recruitment of stone flounder, Platichthys bicoloratus, estimated using otolith Sr:Ca ratios. Fisheries Oceanography 9 (4): 316–327.

    Article  Google Scholar 

  • Yoshinaga, J., A. Nakama, M. Morita, and J.S. Edmonds. 2000. Fish otolith reference material for quality assurance of chemical analyses. Marine Chemistry 69 (1-2): 91–97.

    Article  CAS  Google Scholar 

  • Zohar, Y., A.H. Hines, O. Zmora, E.G. Johnson, R.N. Lipcius, R.D. Seitz, D.B. Eggleston, A.R. Place, E.J. Schott, J.D. Stubblefield, and J.S. Chung. 2008. The Chesapeake Bay blue crab (Callinectes sapidus): a multidisciplinary approach to responsible stock replenishment. Reviews in Fisheries Science 16 (1-3): 24–34.

    Article  Google Scholar 

  • Zuur, A.F., E.N. Ieno, and C.S. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1 (1): 3–14.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the NSW Fishermen’s Co-operatives and NSW commercial fishers who contributed to the project. We thank Adelaide Microscopy (AM) and Microscopy Australia, with special thanks to S. Gilbert and B. Wade at the LA-ICP-MS unit (AM) for technical assistance. Many thanks go to the NSW Recreational Anglers Program, and A. Gould, J. Hughes, C. Stanley and A. Pidd. Animal handling was permitted under the University of Adelaide’s Animal Ethics Approval (S-2018-014) and Animal Research Authority NSW DPI 07/03. This project was supported by the Fisheries Research and Development Corporation on behalf of the Australian Government (project 2016/020), and financial support was provided to A.L.R. through an Australian Government Research Training Program Scholarship at the University of Adelaide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela L. Russell.

Additional information

Communicated by Henrique Cabral

Electronic Supplementary Material

ESM 1

(DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, A.L., Gillanders, B.M., Barnes, T.C. et al. Inter-estuarine Variation in Otolith Chemistry in a Large Coastal Predator: a Viable Tool for Identifying Coastal Nurseries?. Estuaries and Coasts 44, 1132–1146 (2021). https://doi.org/10.1007/s12237-020-00825-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00825-x

Keywords

Navigation