Skip to main content

Decomposition Rates of Surficial and Buried Organic Matter and the Lability of Soil Carbon Stocks Across a Large Tropical Seagrass Landscape

Abstract

The paradigm for understanding the accumulation of organic carbon in vegetated coastal “blue carbon” habitats holds that burial of organic carbon (Corg) slows decomposition and leads to stability of carbon stocks. Further, it is generally assumed that the presence of the plant communities contributes to the buried organic matter and the stability of the carbon stocks. In this study, these assumptions were tested and the lability of soil organic carbon was examined as a function of environmental and plant community drivers. Samples of surficial sediment and seagrass community characteristics were collected at 93 locations across the ca. 15,000 km2 of seagrass beds in south Florida. Ramped pyrolysis was used to describe the relative lability of soil organic carbon across the landscape. Organic matter (OM) was lost at all temperatures from 180 to 600 °C, suggesting that even the relatively high combustion temperature of 550 °C underestimates OM content by ≈ 10% on average. Additionally, deployments of model substrates (canvas strips) were used to examine decomposition rates of buried and surficial organic material at a subset of these sites. On average, finer, muddier soils contained slightly higher Corg stocks than coarser sediment sites, but the relationships between sediment grain size and seagrass community structure was weak. The lability of soil organic carbon varied with sediment grain size; as much as 80% of the Corg was refractory in coarse-grained soils compared with less than 30% in muddy soils. In muddy soils, burial decreased cellulose decomposition rate by an average of 22–39% compared with surficial breakdown, but in coarse-grained soils, burial enhanced cellulose decomposition rate by at least 55%. Taken as a whole, this study suggests that burial does not enhance Corg storage in all blue carbon environments, and that soil C stores are only weakly correlated with seagrass biomass at the landscape scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Armitage, A.R., and J.W. Fourqurean. 2006. The short-term influence of herbivory near patch reefs varies between seagrass species. Journal of Experimental Marine Biology and Ecology 339 (1): 65–74.

    Google Scholar 

  2. Armitage, A.R., and J.W. Fourqurean. 2016. Carbon storage in seagrass soils: Long-term nutrient history exceeds the effects of near-term nutrient enrichment. Biogeosciences 13 (1): 313–321.

    Google Scholar 

  3. Arndt, S., B.B. Jorgensen, D.E. LaRowe, J.J. Middelburg, R.D. Pancost, and P. Regnier. 2013. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Science Reviews 123: 53–86.

    CAS  Google Scholar 

  4. Belshe, E.F., D. Hoeijmakers, N. Herran, M. Mtolera, and M. Teichberg. 2018. Seagrass community-level controls over organic carbon storage are constrained by geophysical attributes within meadows of Zanzibar, Tanzania. Biogeosciences 15 (14): 4609–4626.

    CAS  Google Scholar 

  5. Benner, R., M.L. Fogel, E.K. Sprauge, and R.E. Hodson. 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329 (6141): 708–710.

    CAS  Google Scholar 

  6. Bergamaschi, B.A., E. Tsamakis, R.G. Keil, T.I. Eglinton, D.B. Montlucon, and J.I. Hedges. 1997. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru margin sediments. Geochimica et Cosmochimica Acta 61 (6): 1247–1260.

    CAS  Google Scholar 

  7. Bianchi, T.S. 2011. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proceedings of the National Academy of Sciences of the United States of America 108 (49): 19473–19481.

    CAS  Google Scholar 

  8. Borum, J., O. Pedersen, T.M. Greve, T.A. Frankovich, J.C. Zieman, J.W. Fourqurean, and C.J. Madden. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93 (1): 148–158.

    CAS  Google Scholar 

  9. Bos, A.R., T.J. Bouma, G.L.J. de Kort, and M.M. van Katwijk. 2007. Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification. Estuarine Coastal and Shelf Science 74 (1-2): 344–348.

    Google Scholar 

  10. Burdige, D.J. 2005. Burial of terrestrial organic matter in marine sediments: A re-assessment. Global Biogeochemical Cycles 19: 7.

    Google Scholar 

  11. Burdige, D.J. 2007. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chemical Reviews 107 (2): 467–485.

    CAS  Google Scholar 

  12. Burdige, D.J., and R.C. Zimmerman. 2002. Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnology and Oceanography 47 (6): 1751–1763.

    CAS  Google Scholar 

  13. Campbell, J.E., and J.W. Fourqurean. 2009. Interspecific variation in the elemental and stable isotopic content of seagrasses in South Florida. Marine Ecology Progress Series 387: 109–123.

    CAS  Google Scholar 

  14. Campbell, J.E., E.A. Lacey, R.A. Decker, S. Crooks, and J.W. Fourqurean. 2015. Carbon storage in seagrass beds of Abu Dhabi, United Arab Emirates. Estuaries and Coasts 38 (1): 242–251.

    CAS  Google Scholar 

  15. Capel, E.L., J.M. de la Rosa Arranz, F.J. González-Vila, J.A. González-Perez, and D.A. Manning. 2006. Elucidation of different forms of organic carbon in marine sediments from the Atlantic coast of Spain using thermal analysis coupled to isotope ratio and quadrupole mass spectrometry. Organic Geochemistry 37 (12): 1983–1994.

    CAS  Google Scholar 

  16. Cook, P.L.M., F. Wenzhofer, R.N. Glud, F. Janssen, and M. Huettel. 2007. Benthic solute exchange and carbon mineralization in two shallow subtidal sandy sediments: Effect of advective pore-water exchange. Limnology and Oceanography 52 (5): 1943–1963.

    CAS  Google Scholar 

  17. Dahl, M., D. Deyanova, S. Gutschow, M.E. Asplund, L.D. Lyimo, V. Karamfilov, R. Santos, M. Bjork, and M. Gullstrom. 2016. Sediment properties as important predictors of carbon storage in Zostera marina meadows: A comparison of four European areas. PLoS One 11 (12): e0167493.

    Google Scholar 

  18. Dauwe, B., J.J. Middelburg, and P.M.J. Herman. 2001. Effect of oxygen on the degradability of organic matter in subtidal and intertidal sediments of the North Sea area. Marine Ecology Progress Series 215: 13–22.

    CAS  Google Scholar 

  19. Dean, W.E. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition comparison with other methods. Journal of Sedimentary Petrology 44: 242–248.

    CAS  Google Scholar 

  20. Deflaun, M.F., and L.M. Mayer. 1983. Relationships between bacteria and grain surfaces in intertidal sediments. Limnology and Oceanography 28 (5): 873–881.

    Google Scholar 

  21. Duarte, C.M., H. Kennedy, N. Marbà, and I. Hendriks. 2011. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean & Coastal Management 51: 671–688.

    Google Scholar 

  22. Duarte, C.M., and D. Krause-Jensen. 2017. Export from Seagrass meadows contributes to marine carbon sequestration. Frontiers in Marine Science 4.

  23. Ellison, G.N., and N.J. Gotelli. 2004. A primer of ecological statistics. Sunderland, MA: Sinauer.

    Google Scholar 

  24. Enriquez, S., C.M. Duarte, and K. Sand-Jensen. 1993. Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N:P content. Oecologia 94 (4): 457–471.

    CAS  Google Scholar 

  25. Erftemeijer, P.L.A., and E.W. Koch. 2001. Sediment geology methods for seagrass habitat. In Global Seagrass Research Methods, ed. F.T. Short, C.A. Short, and R.G. Coles, 345–367. Amsterdam: Elsevier Science.

    Google Scholar 

  26. Folk, R.L. 1980. Petrology of sedimentary rocks. Austin: Hemphill Publishing Company.

    Google Scholar 

  27. Fonseca, M.S., J.W. Fourqurean, and M.A.R. Koehl. 2019. Effect of seagrass on current speed: Importance of flexibility vs shoot density. Frontiers in Marine Science 6.

  28. Fourqurean, J.W., J.N. Boyer, M.J. Durako, L.N. Hefty, and B.J. Peterson. 2003. Forecasting responses of seagrass distributions to changing water quality using monitoring data. Ecological Applications 13 (2): 474–489.

    Google Scholar 

  29. Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marba, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen, K.J. McGlathery, and O. Serrano. 2012a. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5 (7): 505–509.

    CAS  Google Scholar 

  30. Fourqurean, J.W., M.J. Durako, M.O. Hall, and L.N. Hefty. 2002. Seagrass distribution in south Florida: A multi-agency coordinated monitoring program. In The Everglades, Florida bay, and the coral reefs of the Florida keys, ed. J.W. Porter and K.G. Porter, 497–522. Boca Raton: CRC Press.

    Google Scholar 

  31. Fourqurean, J.W., S.P. Escorcia, W.T. Anderson, and J.C. Zieman. 2005. Spatial and seasonal variability in elemental content, δ13C, and δ15N of Thalassia testudinum from south Florida and its implications for ecosystem studies. Estuaries 28 (3): 447–461.

    CAS  Google Scholar 

  32. Fourqurean, J.W., G.A. Kendrick, L.S. Collins, R.M. Chambers, and M.A. Vanderklift. 2012b. Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: Examples from Florida Bay and Shark Bay. Marine and Freshwater Research 63 (11): 967–983.

    CAS  Google Scholar 

  33. Fourqurean, J.W., G.V.N. Powell, W.J. Kenworthy, and J.C. Zieman. 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72 (3): 349–358.

    Google Scholar 

  34. Fourqurean, J.W., and L.M. Rutten. 2003. Competing goals of spatial and temporal resolution: Monitoring seagrass communities on a regional scale. In Monitoring ecosystem initiatives: Interdisciplinary approaches for evaluating ecoregional initiatives, ed. D.E. Busch and J.C. Trexler, 257–288. Washington, D. C: Island Press.

    Google Scholar 

  35. Fourqurean, J.W., and J.E. Schrlau. 2003. Changes in nutrient content and stable isotope ratios of C and N during decomposition of seagrasses and mangrove leaves along a nutrient availability gradient in Florida Bay, USA. Chemistry and Ecology 19 (5): 373–390.

    CAS  Google Scholar 

  36. Fourqurean, J.W., A.W. Willsie, C.D. Rose, and L.M. Rutten. 2001. Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Marine Biology 138 (2): 341–354.

    Google Scholar 

  37. Fourqurean, J.W., and J.C. Zieman. 2002. Seagrass nutrient content reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys, USA. Biogeochemistry 61 (3): 229–245.

    CAS  Google Scholar 

  38. Fourqurean, J.W., J.C. Zieman, and G.V.N. Powell. 1992. Phosphorus limitation of primary production in Florida bay: Evidence from the C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography 37 (1): 162–171.

    CAS  Google Scholar 

  39. Fry, B., R.S. Scanlan, and P.L. Parker. 1977. Stable crbon isotope evidence for two sources of organic matter in coastal sediments: Seagrasses and plankton. Geochimica et Cosmochimica Acta 41 (12): 1875–1877.

    CAS  Google Scholar 

  40. Godshalk, G.L., and R.G. Wetzel. 1978. Decomposition of aquatic angiosperms. III. Zostera marina L. and a conceptual model of decomposition. Aquatic Biology 5: 329–354.

    CAS  Google Scholar 

  41. Greiner, J.T., K.J. McGlathery, J. Gunnell, and B.A. McKee. 2013. Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PLoS One 8 (8): e72469.

    CAS  Google Scholar 

  42. Guenet, B., M. Danger, L. Abbadie, and G. Lacroix. 2010. Priming effect: Bridging the gap between terrestrial and aquatic ecology. Ecology 91 (10): 2850–2861.

    Google Scholar 

  43. Gullstrom, M., L.D. Lyimo, M. Dahl, G.S. Samuelsson, M. Eggertsen, E. Anderberg, L.M. Rasmusson, H.W. Linderholm, A. Knudby, S. Bandeira, L.M. Nordlund, and M. Bjork. 2018. Blue carbon storage in tropical seagrass meadows relates to carbonate stock dynamics, plant-sediment processes, and landscape context: Insights from the Western Indian Ocean. Ecosystems 21 (3): 551–566.

    Google Scholar 

  44. Hansen, J.C.R., and M.A. Reidenbach. 2012. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Marine Ecology Progress Series 448: 271–287.

    Google Scholar 

  45. Hargrave, B.T. 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnology and Oceanography 17: 583-&.

  46. Harrison, A.F., P.M. Latter, and D.W.H. Walton. 1988. Cotton strip assay: An index of decomposition in soils. In ITE Symposium. Cumbria: Institute of Terrestrial Ecology.

  47. Harrison, K.G., W.S. Broecker, and G. Bonani. 1993. The effects of changing land use on soil radiocarbon. Science 262 (5134): 725–726.

    CAS  Google Scholar 

  48. Harrison, P.G. 1989. Detrital processing in seagrass systems: A review of the factors affecting decay rates, remineralization, and herbivory. Aquatic Botany 23: 263–288.

    Google Scholar 

  49. Heiri, O., A.F. Lotter, and G. Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology 25 (1): 101–110.

    Google Scholar 

  50. Hemminga, M.A., and C.M. Duarte. 2000. Seagrass ecology. Cambridge: Cambridge University Press.

    Google Scholar 

  51. Hendriks, I.E., T. Sintes, T.J. Bouma, and C.M. Duarte. 2008. Experimental assessment and modeling evaluation of the effects of seagrass (P. oceanica) on flow and particle trapping. Marine Ecology Progress Series 365: 163–173.

  52. Howard, J., S. Hoyt, K. Isensee, E. Pidgeon, and M. Telszewski. 2014. Coastal blue carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Arlington: Conservation International, Intergovernmental, Oceanographic Commission of UNESCO, International Union for Conservation of Nature.

    Google Scholar 

  53. Howard, J., A.E. Sutton-Grier, D. Herr, J.A. Kleypas, E. Landis, E. Mcleod, E. Pidgeon, and S. Simpson. 2017. Clarifying the role of coastal and marine systems in climate mitigation. Frontiers in Ecology and the Environment 15 (1): 42–50.

    Google Scholar 

  54. Howard, J.L., J.C. Creed, M.V.P. Aguiar, and J.W. Fourqurean. 2018. CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “blue carbon” storage. Limnology and Oceanography 63 (1): 160–172.

    CAS  Google Scholar 

  55. Howard, J.L., A. Perez, C.C. Lopes, and J.W. Fourqurean. 2016. Fertilization changes seagrass community structure but not blue carbon storage: Results from a 30-year field experiment. Estuaries and Coasts 39 (5): 1422–1434.

    Google Scholar 

  56. Huettel, M., P. Berg, and J.E. Kostka. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. In Annual review of marine science, Vol 6, ed. C.A. Carlson and S.J. Giovannoni, 23–51. Palo Alto: Annual Reviews.

    Google Scholar 

  57. Hulthe, G., S. Hulth, and P.O.J. Hall. 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochimica et Cosmochimica Acta 62 (8): 1319–1328.

    CAS  Google Scholar 

  58. IPCC. 2014. 2013 supplement to the 2006 IPCC guidelines for National Greenhouse Gas Inventories: Wetlands, ed. T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda and T.G. Troxler. Switzerland: IPCC.

  59. Janssen, F., M. Huettel, and U. Witte. 2005. Pore-water advection and solute fluxes in permeable marine sediments (II): Benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea). Limnology and Oceanography 50 (3): 779–792.

    CAS  Google Scholar 

  60. Keil, R.G., and J.I. Hedges. 1993. Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments. Chemical Geology 107 (3-4): 385–388.

    Google Scholar 

  61. Keil, R.G., E. Tsamakis, C.B. Fuh, J.C. Giddings, and J.I. Hedges. 1994. Mineralogical and textural controls on the organic composition of coastal marine sediments - hydrographic separationusing splitt-fractionation. Geochimica et Cosmochimica Acta 58 (2): 879–893.

    CAS  Google Scholar 

  62. Kennedy, H., J. Beggins, C.M. Duarte, J.W. Fourqurean, M. Holmer, N. Marba, and J.J. Middelburg. 2010. Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles 24: GB4026.

    Google Scholar 

  63. Kirwan, M.L., G.R. Guntenspergen, and J.A. Langley. 2014. Temperature sensitivity of organic-matter decay in tidal marshes. Biogeosciences 11 (17): 4801–4808.

    Google Scholar 

  64. Kristensen, E. 1990. Characterization of biogenic organic matter by stepwise thermogravimetry (STG). Biogeochemistry 9 (2): 135–159.

    CAS  Google Scholar 

  65. Kristensen, E., S.I. Ahmed, and A.H. Devol. 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest? Limnology and Oceanography 40 (8): 1430–1437.

    CAS  Google Scholar 

  66. Kristensen, E., and F.O. Andersen. 1987. Determination of organic carbon in marine sediments: a comparison of two CHN-analyzer methods. Journal of Experimental Marine Biology and Ecology 109: 135–159.

    Google Scholar 

  67. Kristensen, E., and M. Holmer. 2001. Decomposition of plant materials in marine sediment exposed to different electron accepters (O-2, NO3-, and SO42-), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochimica et Cosmochimica Acta 65 (3): 419–433.

    CAS  Google Scholar 

  68. Lavery, P.S., M.-A. Mateo, O. Serrano, and M. Rozaimi. 2013. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 8 (9): e73748.

    CAS  Google Scholar 

  69. López, N.I., C.M. Duarte, F. Vallespinós, J. Romero, and T. Alcoverro. 1998. The effects of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. Journal of Experimental Marine Biology and Ecology 224 (2): 155–166.

    Google Scholar 

  70. Lovelock, C.E., T. Atwood, J. Baldock, C.M. Duarte, S. Hickey, P.S. Lavery, P. Masque, P.I. Macreadie, A.M. Ricart, O. Serrano, and A. Steven. 2017a. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment 15 (5): 257–265.

    Google Scholar 

  71. Lovelock, C.E., J.W. Fourqurean, and J.T. Morris. 2017b. Modeled CO2 emissions from coastal wetland transitions to other land uses: Tidal marshes, mangrove forests, and seagrass beds. Frontiers in Marine Science 4.

  72. Macreadie, P.I., D.A. Nielsen, J.J. Kelleway, T.B. Atwood, J.R. Seymour, K. Petrou, R.M. Connolly, A.C.G. Thomson, S.M. Trevathan-Tackett, and P.J. Ralph. 2017. Can we manage coastal ecosystems to sequester more blue carbon? Frontiers in Ecology and the Environment 15 (4): 206–213.

    Google Scholar 

  73. Macreadie, P.I., S.M. Trevathan-Tackett, C.G. Skilbeck, J. Sanderman, N. Curlevski, G. Jacobsen, and J.R. Seymour. 2015. Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proceedings of the Royal Society B-Biological Sciences 282.

  74. Marba, N., A. Arias-Ortiz, P. Masque, G.A. Kendrick, I. Mazarrasa, G.R. Bastyan, J. Garcia-Orellana, and C.M. Duarte. 2015. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. Journal of Ecology 103 (2): 296–302.

    CAS  Google Scholar 

  75. Mayer, L.M. 1994. Surface-area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta 58 (4): 1271–1284.

    CAS  Google Scholar 

  76. Mayer, L.M. 1995. Sedimentary organic matter preservation - an assessment and speculative synthesis - a comment. Marine Chemistry 49 (2-3): 123–126.

    CAS  Google Scholar 

  77. Mazarrasa, I., N. Marba, C.E. Lovelock, O. Serrano, P. Lavery, J.W. Fourqurean, H. Kennedy, M.A. Mateo, D. Krause-Jensen, A.D.L. Steven, and C.M. Duarte. 2015. Seagrass meadows as globally significant carbonate reservoir. Biogeosciences 12 (16): 4993–5003.

    Google Scholar 

  78. McLeod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, and B.R. Silliman. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 7: 362–370.

    Google Scholar 

  79. Middelburg, J.J., and L.A. Levin. 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6 (7): 1273–1293.

    CAS  Google Scholar 

  80. Miyajima, T., M. Hori, M. Hamaguchi, H. Shimabukuro, and G. Yoshida. 2017. Geophysical constraints for organic carbon sequestration capacity of Zostera marina seagrass meadows and surrounding habitats. Limnology and Oceanography 62 (3): 954–972.

    Google Scholar 

  81. Moodley, L., J.J. Middelburg, P.M.J. Herman, K. Soetaert, and G.J. de Lange. 2005. Oxygenation and organic-matter preservation in marine sediments: Direct experimental evidence from ancient organic carbon-rich deposits. Geology 33 (11): 889–892.

    CAS  Google Scholar 

  82. Moran, M.A., and R.E. Hodson. 1989. Bacterial secondary production on vascular plant detritus - relationships to detritus composition and degradation rate. Applied and Environmental Microbiology 55 (9): 2178–2189.

    CAS  Google Scholar 

  83. Nierop, K.G.J., G.J. Reichart, H. Veld, and J.S.S. Damste. 2017. The influence of oxygen exposure time on the composition of macromolecular organic matter as revealed by surface sediments on the Murray Ridge (Arabian Sea). Geochimica et Cosmochimica Acta 206: 40–56.

    CAS  Google Scholar 

  84. Olson, J.S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44 (2): 322–331.

    Google Scholar 

  85. Oreska, M.P.J., K.J. McGlathery, and J.H. Porter. 2017. Seagrass blue carbon spatial patterns at the meadow-scale. PLoS One 12 (4): e0176630.

    Google Scholar 

  86. Pendleton, L., D.C. Donato, B.C. Murray, S. Crooks, W.A. Jenkins, S. Sifleet, C. Craft, J.W. Fourqurean, J.B. Kauffman, N. Marba, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon, and A. Baldera. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7 (9): e43542.

    CAS  Google Scholar 

  87. Persson, J.A., E. Johansson, and C. Albano. 1986. Quantitative thermogravimty on peat - a multivariate approach. Analytical Chemistry 58 (6): 1173–1178.

    CAS  Google Scholar 

  88. Rohr, M.E., C. Bostrom, P. Canal-Verges, and M. Holmer. 2016. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows. Biogeosciences 13 (22): 6139–6153.

    Google Scholar 

  89. Schanz, A., and H. Asmus. 2003. Impact of hydrodynamics on development and morphology of intertidal seagrasses in the Wadden Sea. Marine Ecology Progress Series 261: 123–134.

    Google Scholar 

  90. Serrano, O., P.S. Lavery, C.M. Duarte, G.A. Kendrick, A. Calafat, P.H. York, A. Steven, and P.I. Macreadie. 2016a. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems? Biogeosciences 13 (17): 4915–4926.

    CAS  Google Scholar 

  91. Serrano, O., P.S. Lavery, M. Rozaimi, and M.A. Mateo. 2014. Influence of water depth on the carbon sequestration capacity of seagrasses. Global Biogeochemical Cycles 28 (9): 950–961.

    CAS  Google Scholar 

  92. Serrano, O., A.M. Ricart, P.S. Lavery, M.A. Mateo, A. Arias-Ortiz, P. Masque, M. Rozaimi, A. Steven, and C.M. Duarte. 2016b. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows. Biogeosciences 13 (15): 4581–4594.

    CAS  Google Scholar 

  93. Silburn, B., S. Kroger, E.R. Parker, D.B. Sivyer, N. Hicks, C.F. Powell, M. Johnson, and N. Greenwood. 2017. Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability. Biogeochemistry 135 (1-2): 69–88.

    CAS  Google Scholar 

  94. Slocum, M.G., J. Roberts, and I.A. Mendelssohn. 2009. Artist canvas as a new standard for the cotton-strip assay. Journal of Plant Nutrition and Soil Science 172 (1): 71–74.

    CAS  Google Scholar 

  95. Tiegs, S.D., J.E. Clapcott, N.A. Griffiths, and A.J. Boulton. 2013. A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators 32: 131–139.

    CAS  Google Scholar 

  96. Tiegs, S.D., S.D. Langhans, K. Tockner, and M.O. Gessner. 2007. Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. Journal of the North American Benthological Society 26 (1): 70–77.

    Google Scholar 

  97. Trevathan-Tackett, S.M., T.C. Jeffries, P.I. Macreadie, B. Manojlovic, and P. Ralph. 2020. Long-term decomposition captures key steps in microbial breakdown of seagrass litter. Science of the Total Environment 705: 12.

    Google Scholar 

  98. Trevathan-Tackett, S.M., J. Kelleway, P.I. Macreadie, J. Beardall, P. Ralph, and A. Bellgrove. 2015. Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96 (11): 3043–3057.

    Google Scholar 

  99. Trevathan-Tackett, S.M., P.I. Macreadie, J. Sanderman, J. Baldock, J.M. Howes, and P.J. Ralph. 2017a. A global assessment of the chemical recalcitrance of Seagrass tissues: Implications for long-term carbon sequestration. Frontiers in Plant Science 8.

  100. Trevathan-Tackett, S.M., J.R. Seymour, D.A. Nielsen, P.I. Macreadie, T.C. Jeffries, J. Sanderman, J. Baldock, J.M. Howes, A.D.L. Steven, and P.J. Ralph. 2017b. Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiology Ecology 93 (6).

  101. Trevathan-Tackett, S.M., A.C.G. Thomson, P.J. Ralph, and P.I. Macreadie. 2018. Fresh carbon inputs to seagrass sediments induce variable microbial priming responses. Science of the Total Environment 621: 663–669.

    CAS  Google Scholar 

  102. Valiela, I., J.M. Teal, S.D. Allen, R. Vanetten, D. Goehringer, and S. Volkmann. 1985. Decomposition in salt-marsh ecosystems - the phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology 89 (1): 29–54.

    CAS  Google Scholar 

  103. Wang, Q.R., Y.C. Li, and Y. Wang. 2011. Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources. Environmental Monitoring and Assessment 174 (1-4): 241–257.

    CAS  Google Scholar 

  104. Wang, X.J., J.P. Wang, and J. Zhang. 2012. Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China. PLoS One 7.

  105. Wanless, H.R., and M.G. Tagett. 1989. Origin, growth and evolution of carbonate mudbanks in Florida Bay. Bulletin of Marine Science 44: 454–489.

    Google Scholar 

  106. Ward, L.G., W.M. Kemp, and W.R. Boynton. 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Marine Geology 59: 85-103.

  107. Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106 (30): 12377–12381.

    CAS  Google Scholar 

  108. Wieder, R.K., and G.E. Lang. 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63 (6): 1636–1642.

    Google Scholar 

  109. Zieman, J.C., J.W. Fourqurean, and R.L. Iverson. 1989. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay. Bulletin of Marine Science 44: 292–311.

    Google Scholar 

Download references

Acknowledgments

Many of the ideas explored in this paper were developed in conversations with our colleagues in the Blue Carbon Initiative. In our lab, David Barahona, Kai Lopez, Eric Thompson, Cathy Guinovart, Michelle Tongue, Kandice Starr, Charlotte Pechtl, and Alex Perez helped collect, prepare, and process samples. We are grateful to two anonymous reviewers who offered support and valuable comments. We would also like to thank the staff at Everglades National Park/Florida Bay Interagency Science Center for their assistance and access to the Park’s Florida Bay Benthic Survey. This is contribution 211 of the Coastlines and Oceans Division of the Institute of Environment at FIU.

Funding

This research was conducted as part of the Florida Keys National Marine Sanctuary seagrass monitoring program funded by the US Environmental Protection Agency under Contract No. X7 95469210, and the Florida Coastal Everglades Long-Term Ecological Research program under the National Science Foundation Grant DEB-1237517 and by the 2016 South Florida National Parks Trust Grant for Bay Benthic Habitat Assessment. Further support was provided by a Dissertation Year Fellowship from FIU.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James W. Fourqurean.

Additional information

Communicated by Melisa C. Wong

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Howard, J.L., Lopes, C.C., Wilson, S.S. et al. Decomposition Rates of Surficial and Buried Organic Matter and the Lability of Soil Carbon Stocks Across a Large Tropical Seagrass Landscape. Estuaries and Coasts 44, 846–866 (2021). https://doi.org/10.1007/s12237-020-00817-x

Download citation

Keywords

  • Coastal ecosystems
  • Blue carbon
  • Loss on ignition
  • Ramped pyrolysis
  • Stable isotopes
  • Soil carbon