Skip to main content

Recovery Dynamics of the Seagrass Zostera marina Following Mass Mortalities from Two Extreme Climatic Events

Abstract

The marine angiosperm, Zostera marina, utilizes both asexual and sexual reproduction to grow, persist, and recover in dynamic environments. Sexual reproduction could be increasingly important for Z. marina population resilience to extreme weather events resulting from climate change. In the Chesapeake Bay, Virginia, a warming event in 2005 and unprecedented rainfall in combination with warming in 2018 led to large-scale Z. marina declines. We compare the survival and demographic characteristics of recovering Z. marina populations following these declines to identify the demographic mechanisms driving population recovery. Mean bottom cover in recovering populations was higher in 2019 than 2006, despite lower adult survival, because seedling abundance was significantly higher. Seedlings contributed significantly more to total shoot abundance than adult clones in 2019. Adult clone survival was lower in 2019 in regions that showed greater variation in temperature and salinity. Shifts in adult clone survival and seedling abundance in recovering populations in the Chesapeake Bay suggest that Z. marina has two complementary demographic mechanisms for recovery: the seed bank produced from the previous year’s flowering and the rapid growth and reproduction of surviving adults. The relevance of reproductive forms or life stages to recovering populations may depend on the severity of the decline in adult survival and the supply of propagules that could facilitate recovery. If climate change increases the frequency of extreme events in the Chesapeake Bay and elsewhere, perennial Z. marina populations may be increasingly dependent on the previous years’ flowering and recruitment from seed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alcoverro, T., M. Manzanera, and J. Romero. 2001. Annual metabolic carbon balance of the seagrass Posidonia oceanica: the importance of carbohydrate reserves. Marine Ecology Progress Series 211: 105–116.

  • Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

  • Arias-Ortiz, A., O. Serrano, P. Masqué, P.S. Lavery, U. Mueller, G.A. Kendrick, M. Rozaimi, A. Esteban, J.W. Fourqurean, N. Marbà, M.A. Mateo, K. Murray, M.J. Rule, and C.M. Duarte. 2018. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nature Climate Change 8 (4): 338–344. https://doi.org/10.1038/s41558-018-0096-y.

    CAS  Article  Google Scholar 

  • Boese, B.L., J.E. Kaldy, P.T. Clinton, P.M. Eldridge, and C.L. Folger. 2009. Recolonization of intertidal Zostera marina L. (eelgrass) following experimental shoot removal. Journal of Experimental Marine Biology and Ecology 374 (1): 69–77. https://doi.org/10.1016/j.jembe.2009.04.011.

    Article  Google Scholar 

  • Burnham, K.P., and D.R. Anderson. 2002. Model selection and multi-model inference: a practical information-theoretic approach. New York: Springer-Verlag.

    Google Scholar 

  • Cambridge, M.L., G.R. Bastyan, and D.I. Walker. 2002. Recovery of Posidonia meadows in Oyster Harbour, southwestern Australia. Bulletin of Marine Science 71(3): 1279–1289.

  • Carr, J.A., P. D’Odorico, K.J. McGlathery, and P.L. Wiberg. 2012. Modeling the effects of climate change on eelgrass stability and resilience: future scenarios and leading indicators of collapse. Marine Ecology Progress Series 448: 289–301.

    Article  Google Scholar 

  • Collier, C.J., P.S. Lavery, P.J. Ralph, and R.J. Masini. 2008. Physiological characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Marine Ecology Progress Series 353: 65–79.

    Article  Google Scholar 

  • Cribari-Neto, F., and A. Zeileis. 2009. Beta regression in R. In Research report series, report 98. Department of Statistics and Mathematics: WU Vienna University of Economics and Business http://epub.wu.ac.at/.

    Google Scholar 

  • Diaz-Almela, E., N. Marbà, and C.M. Duarte. 2007. Consequences of Mediterranean warming events in seagrass (Posidonia oceanicMarba, N., and Duarte, C. M. (2010). Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality). Global Change Biology 16: 2366–2375.

    Google Scholar 

  • Fredley, J., M.J. Durako, and M.O. Hall. 2019. Multivariate analyses link macrophyte and water quality indicators to seagrass die-off in Florida Bay. Ecological Indicators 101: 692–701.

    CAS  Article  Google Scholar 

  • Friedman, J., and M.J. Rubin. 2015. All in good time: understanding annual and perennial strategies in plants. American Journal of Botany 102 (4): 497–499.

    Article  Google Scholar 

  • Greve, T.M., D. Krause-Jensen, M.B. Rasmussen, and P.B. Christensen. 2005. Means of rapid eelgrass (Zostera marina L.) recolonisation in former dieback areas. Aquatic Botany 82(2): 143–156.

  • Harwell, M.C., and R.J. Orth. 2002. Seed-bank patterns in Chesapeake Bay eelgrass (Zostera marina L.): a bay-wide perspective. Estuaries 25 (6): 1196–1204.

    Article  Google Scholar 

  • Jarvis, J.C., and K.A. Moore. 2010. The role of seedlings and seed bank viability in the recovery of Chesapeake Bay, USA, Zostera marina populations following a large-scale decline. Hydrobiologia 649 (1): 55–68.

    Article  Google Scholar 

  • Jarvis, J.C., K.A. Moore, and W.J. Kenworthy. 2012. Characterization and ecological implication of eelgrass life history strategies near the species’ southern limit in the western North Atlantic. Marine Ecology Progress Series 444: 43–56.

    Article  Google Scholar 

  • Jarvis, J.C., K.A. Moore, and W.J. Kenworthy. 2014a. Persistence of Zostera marina L. (eelgrass) seeds in the sediment seed bank. Journal of Experimental Marine Biology and Ecology 459: 126–136.

    Article  Google Scholar 

  • Jarvis, J.C., M.J. Brush, and K.A. Moore. 2014b. Modeling loss and recovery of Zostera marina beds in the Chesapeake Bay: the role of seedlings and seed-bank viability. Aquatic Botany 113: 32–45.

    Article  Google Scholar 

  • Johnson, A.J., R.J. Orth, and K.A. Moore. 2020. The role of sexual reproduction in the maintenance of established Zostera marina meadows. Journal of Ecology 108 (3): 945–957. https://doi.org/10.1111/1365-2745.13362.

  • Keddy, C.J. 1987. Reproduction of annual eelgrass variation among habitats and comparison with perennial eelgrass (Zostera marina L.). Aquatic Botany 27 (3): 243–256.

    Article  Google Scholar 

  • Keddy, C.J., and D.G. Patriquin. 1978. An annual form of eelgrass in Nova Scotia. Aquatic Botany 5: 163–170.

    Article  Google Scholar 

  • Kendrick, G.A., M. Waycott, T.J.B. Carruthers, M.L. Cambridge, R. Hovey, S.L. Krauss, P.S. Lavery, D.H. Les, R.J. Lowe, O.M.I. Vidal, J.L.S. Ooi, R.J. Orth, D.O. Rivers, L. Ruiz-Montoya, E.A. Sinclair, J. Statton, J.K. van Dijk, and J.J. Verduin. 2012. The central role of dispersal in the maintenance and persistence of seagrass populations. BioScience 62 (1): 56–65. https://doi.org/10.1525/bio.2012.62.1.10.

    Article  Google Scholar 

  • Kendrick, G.A., R.J. Orth, J. Statton, R. Hovey, L.R. Montoya, R.J. Lowe, S.L. Krauss, and E.A. Sinclair. 2017. Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biological Reviews 92 (2): 921–938. https://doi.org/10.1111/brv.12261.

    Article  Google Scholar 

  • Kendrick, G.A., R.J. Nowicki, Y.S. Olsen, S. Strydom, M.W. Fraser, E.A. Sinclair, J. Statton, R.K. Hovey, J.A. Thomson, D.A. Burkholder, K.M. McMahon, K. Kilminster, Y. Hetzel, J.W. Fourqurean, M.R. Heithaus, and R.J. Orth. 2019. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00455.

  • Kieschnick, R., and B.D. McCullough. 2003. Regression analysis of variates observed on (0, 1): percentages, proportions and fractions. Statistical Modelling 3 (3): 193–213.

    Article  Google Scholar 

  • Kilminster, K., K. McMahon, M. Waycott, G.A. Kendrick, P. Scanes, L. McKenzie, K.R. O’Brien, M. Lyons, A. Ferguson, P. Maxwell, T. Glasby, and J. Udy. 2015. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Science of the Total Environment 534: 97–109. https://doi.org/10.1016/j.scitotenv.2015.04.061.

    CAS  Article  Google Scholar 

  • Koch, E.W., and R.J. Orth. 2003. Seagrasses of the mid-Atlantic Coast of the United States. In World atlas of seagrasses, ed. E.P. Green and F.T. Short, 216–223. Berkeley, California: University of California Press.

    Google Scholar 

  • Kruskal, J.B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29 (2): 115–129.

    Article  Google Scholar 

  • Lefcheck, J.S., D.J. Wilcox, R.R. Murphy, S.R. Marion, and R.J. Orth. 2017. Multiple stressors threaten a critical foundation species in Chesapeake Bay. Global Change Biology 23: 3474–3483. https://doi.org/10.1111/gcb.13623.

    Article  Google Scholar 

  • Lefcheck, J.S., R.J. Orth, W.C. Dennison, D.J. Wilcox, R.R. Murphy, J. Keisman, C. Gurbisz, M. Hannam, J.B. Landry, K.A. Moore, C.J. Patrick, J. Testa, D.E. Weller, and R.A. Batiuk. 2018. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proceedings of the National Academy of Sciences 115 (14): 3658–3662. https://doi.org/10.1073/pnas.1715798115.

    CAS  Article  Google Scholar 

  • Marba, N., and C.M. Duarte. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology 16: 2366–2375.

    Article  Google Scholar 

  • Marion, S.R., and R.J. Orth. 2012. Seedling establishment in eelgrass: seed burial effects on winter losses of developing seedlings. Marine Ecology Progress Series 448: 197–207. https://doi.org/10.3354/meps09612.

    Article  Google Scholar 

  • Moore, K.A., and J.C. Jarvis. 2008. Environmental factors affecting recent summertime eelgrass diebacks in the lower Chesapeake Bay: implications for long-term persistence. Journal of Coastal Research Special Issue No. 55: 135–147.

    Article  Google Scholar 

  • Moore, K.A., D.L. Wilcox, and R.J. Orth. 2000. Analysis of abundance of submersed aquatic vegetation communities in the Chesapeake Bay. Estuaries 23 (1): 115–127.

    Article  Google Scholar 

  • Moore, K.A., E.C. Shields, and D.B. Parrish. 2012. Eelgrass survival in two contrasting systems: role of turbidity and summer water temperatures. Marine Ecology Progress Series 448: 247–258. https://doi.org/10.3354/meps09578.

    Article  Google Scholar 

  • Najjar, R.G., C.R. Pyke, M.B. Adams, D. Breitburg, C. Hershner, M. Kemp, R. Howarth, M.R. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Wood. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86 (1): 1–20.

    CAS  Article  Google Scholar 

  • O’Brien, K.R., M. Waycott, P. Maxwell, G.A. Kendrick, J.W. Udy, A.J.P. Ferguson, K. Kilminster, P. Scanes, L.J. McKenzie, K. McMahon, M.P. Adams, J. Samper-Villarreal, C. Collier, M. Lyons, P.J. Mumby, L. Radke, M.J.A. Christianen, and W.C. Dennison. 2018. Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Marine Pollution Bulletin 134: 166–176.

    Article  Google Scholar 

  • Orth, R.J., and K.A. Moore. 1986. Seasonal and year-to-year variations in the growth of Zostera marina L. (eelgrass) in the lower Chesapeake Bay. Aquatic Botany 24 (4): 335–341. https://doi.org/10.1016/0304-3770(86)90100-2.

    Article  Google Scholar 

  • Orth, R.J., M.C. Harwell, E.M. Bailey, A. Bartholomew, J.T. Jaward, A.V. Lombana, K.A. Moore, J.M. Rhode, and H.E. Woods. 2000. A review of issues in seagrass seed dormancy and germination: implications for conservation and restoration. Marine Ecology Progress Series 220: 277–288.

    Article  Google Scholar 

  • Orth, R.J., K.A. Moore, S.R. Marion, D.J. Wilcox, and D.B. Parrish. 2012. Seed addition facilitates eelgrass recovery in a coastal bay system. Marine Ecology Progress Series 448: 177–195. https://doi.org/10.3354/meps09522.

    Article  Google Scholar 

  • Orth, R.J., W.C. Dennison, J.S. Lefcheck, C. Gurbisz, M. Hannam, J. Keisman, J.B. Landry, K.A. Moore, R.R. Murphy, C.J. Patrick, J. Testa, D.E. Weller, and D.J. Wilcox. 2017. Submersed aquatic vegetation in Chesapeake Bay: sentinel species in a changing world. BioScience 67 (8): 698–712. https://doi.org/10.1093/biosci/bix058.

    Article  Google Scholar 

  • Peterken, C.J. and C.A. Conacher. Seed germination and recolonisation of Zostera capricorni after grazing by dugongs. Aquatic Botany 59: 333–340.

  • Plus, M., J.M. Deslous-Paoli, and F. Dagualt. 2003. Seagrass (Zostera marina L.) bed recolonisation after anoxia-induced full mortality. Aquatic Botany 77: 121–134.

  • Preen, A.R., W.J. Lee Long, and R.G. Coles. 1995. Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquatic Botany 52: 3–17.

  • Rasheed, M.A. 2004. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. Journal of Experimental Marine Biology and Ecology 310 (1): 13–45. https://doi.org/10.1016/j.jembe.2004.03.022.

    Article  Google Scholar 

  • Robertson, A.I., and K.H. Mann. 1984. Disturbance of ice and lifehistory adaptations of the seagrass Zostera marina. Marine Biology 80 (2): 131–141.

    Article  Google Scholar 

  • Salo, T., and M.F. Pedersen. 2014. Synergistic effects of altered salinity and temperature on estuarine elgrass (Zostera marina) seedlings and clonal shoots. Journal of Experimental Marine Biology and Ecology 457: 143–150.

    CAS  Article  Google Scholar 

  • Santamaria-Gallegos, N., J. Janchez-Lizaso, and E. Felix-Pico. 2000. Phenology and growth cycle of annual subtidal eelgrass in a subtropical locality. Aquatic Botany 66 (4): 329–339.

    Article  Google Scholar 

  • Setchell, W.A. 1929. Morphological and phenological notes on Zostera marina L. Univ. Calif. Pub. Bot., 14: 389-452.Sheth, S.N. and A.L. Angert. Demographic compensation does not rescue populations at a trailing range edge. 2018. Proceedings of the National Academy of Sciences 115 (10): 2413–2418. https://doi.org/10.1073/pnas.1715899115.

    CAS  Article  Google Scholar 

  • Sheth, S.N. and A.L. Angert. 2018. Demographic compensation does not rescue populations at a trailing range edge. Proceedings of the National Academy of Sciences 115(10): 2413–2418. https://doi.org/10.1073/pnas.1715899115.

  • Shields, E.C., K.A. Moore, and D.B. Parrish. 2018. Adaptations by Zostera marina dominated seagrass meadows in response to water quality and climate forcing. Diversity 10 (4): 125. https://doi.org/10.3390/d10040125.

    Article  Google Scholar 

  • Shields, E.C., D. Parrish, and K.A. Moore. 2019. Short-term temperature stress results in seagrass community shift in a temperate estuary. Estuaries and Coasts 42 (3): 755–764. https://doi.org/10.1007/s12237-019-00517-1.

    Article  Google Scholar 

  • Silberhorn, G.M., R.J. Orth, and K.A. Moore. 1983. Anthesis and seed production in Zostera marina L. (eelgrass) from the Chesapeake Bay. Aquatic Botany 15 (2): 133–144.

    Article  Google Scholar 

  • Statton, J., R. Sellers, K.W. Dixon, K. Kilminster, D.J. Merritt, and G.A. Kendrick. 2017. Seed dormancy and germination of Halophila ovalis mediated by simulated seasonal temperature changes. Estuarine, Coastal and Shelf Science 198: 156–162. https://doi.org/10.1016/j.ecss.2017.08.045.

    Article  Google Scholar 

  • Strydom, S., K. Murray, S. Wilson, B. Huntley, M. Rule, M. Heithaus, C. Bessey, G.A. Kendrick, D. Burkholder, T. Holmes, M.W. Fraser, and K. Zdunic. 2020. Too hot to handle: unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Global Change Biology 26 (6): 3525–3538. https://doi.org/10.1111/gcb.15065.

    Article  Google Scholar 

  • USGS. 2019. Record freshwater flow in water year 2019 affects conditions in the Chesapeake Bay. https://www.usgs.gov/centers/cba/science/record-freshwater-flow-water-year-2019-affects-conditions-chesapeake-bay?qt-science_center_objects=0#qt-science_center_objects

  • Whitfield, P.A., W.J. Kenworthy, M.J. Durako, K.K. Hammerstrom, and M.F. Merello. 2004. Recruitment of Thalassia testudinum seedlings into physically disturbed seagrass beds. Marine Ecology Progress Series 267: 121–131.

  • Zieman, J.C., J.W. Fourqurean, and T.A. Frankovich. 1999. Seagrass die-off in Florida bay: Long-term trends in abundance and growth of turtle grass, Thalassia testudinum. Estuaries 22 (2): 460–470. https://doi.org/10.2307/1353211.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank F. Holbert for his invaluable assistance in the field.

Funding

This work was supported by funds from the Virginia Marine Resources Recreational Fishing License Funds and the Virginia Institute of Marine Science. This paper is contribution number No. 3929 of the Virginia Institute of Marine Science, College of William & Mary. GAK was funded through ARC Discovery and ARC Linkage grants (ARC DP180100668, LP160101011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Shields.

Additional information

Communicated by Dan Friess

Electronic supplementary material

ESM 1

(DOCX 1537 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, A.J., Shields, E.C., Kendrick, G.A. et al. Recovery Dynamics of the Seagrass Zostera marina Following Mass Mortalities from Two Extreme Climatic Events. Estuaries and Coasts 44, 535–544 (2021). https://doi.org/10.1007/s12237-020-00816-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00816-y

Keywords

  • Seedling
  • Eelgrass
  • Resiliency
  • Temperature
  • Climate
  • Salinity
  • Precipitation