Skip to main content

Advertisement

Log in

Processes Influencing Marsh Elevation Change in Low- and High-Elevation Zones of a Temperate Salt Marsh

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The movement of salt marshes into uplands and marsh submergence as sea level rises is well documented; however, predicting how coastal marshes will respond to rising sea levels is constrained by a lack of process-based understanding of how various marsh zones adjust to changes in sea level. To assess the way in which salt marsh zones differ in their elevation response to sea-level change, and to evaluate how potential hydrologic drivers influence the response, surface elevation tables, marker horizons, and shallow rod surface elevation tables were installed in a Virginia salt marsh in three zones that differed in elevation and vegetation type. Decadal rates of elevation change, surface accretion, and shallow subsidence or expansion were examined in the context of hydrologic drivers that included local sea-level rise, flooding frequency, hurricane storm surge, and precipitation. Surface elevation increases were fastest in the low-elevation zone, intermediate in the middle-elevation zone, and slowest in the high-elevation zone. These rates are similar to (low and middle marsh) or less than (high marsh) local rates of sea-level rise. Root zone expansion, presumably due to root growth and organic matter accumulation, varied among the three salt marsh zones and accounted for 37%, but probably more, of the increase in marsh surface elevation. We infer that, during marsh transgression, soil-forming processes shift from biogenic (high marsh) to minerogenic (low marsh) in response, either directly or indirectly, to changing hydrologic drivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen, T.R., and G.F. Oertel. 2005. Landscape modifications by hurricane Isabel, Fisherman Island, Virginia. In Hurricane Isabel in Perspective, ed. K.G. Sellner, 73–79. Edgewater, MD: CRC Publication 05–160. Chesapeake Research Consortium.

  • Anisfeld, S.C., K.R. Cooper, and A.C. Kemp. 2017. Upslope development of a tidal marsh as a function of upland land use. Global Change Biology 23 (2): 755–766. https://doi.org/10.1111/gcb.13398.

    Article  Google Scholar 

  • Anisfeld, S.C., M.J. Tobin, and G. Benoit. 1999. Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound. Estuaries 22 (2): 231–244.

    CAS  Google Scholar 

  • Belyea, L.R., and A.J. Baird. 2006. Beyond “The limits to peat bog growth”: Cross-scale feedback in peatland development. Ecological Monographs 76 (3): 299–322.

    Google Scholar 

  • Blum, L.K. 1993. Spartina alterniflora root dynamics in a Virginia marsh. Marine Ecology Progress Series 102: 169–178.

    Google Scholar 

  • Blum, L.K., and R.R. Christian. 2004. Belowground production and decomposition along a tidal gradient in a Virginia salt marsh. In Ecogeomorphology of tidal marshes, ed. S. Fagherazzi, M. Marani, and L.K. Blum, 47–75. Washington, D.C.: American Geophysical Union.

    Google Scholar 

  • Bradley, P.M., and J.T. Morris. 1990. Physical characteristics of salt marsh sediments: Ecological implications. Marine Ecology Progress Series 61: 245–252.

  • Bricker-Urso, S., S.W. Nixon, J.K. Cochran, D.J. Hirschberg, and C. Hunt. 1989. Accretion rates and sediment accumulation in Rhode-Island salt marshes. Estuaries 12 (4): 300–317.

    CAS  Google Scholar 

  • Brinson, M.M., and R.R. Christian. 1999. Stability of Juncus roemerianus patches in a salt marsh. Wetlands 19 (1): 65–70.

    Google Scholar 

  • Brinson, M.M., R.R. Christian, and L.K. Blum. 1995. Multiple stages in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18 (4): 648–659.

    CAS  Google Scholar 

  • Cahoon, D.R. 2015. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38 (3): 1077–1084.

    Google Scholar 

  • Cahoon, D.R., and G.R. Guntenspergen. 2010. Climate change, sea-level rise, and coastal wetlands. National Wetlands Newsletter 32: 8–12.

    Google Scholar 

  • Cahoon, D.R., J.A. Lynch, P. Hensel, R. Boumans, P.T. Pereira, B. Segura, and J.W. Day Jr. 2002a. High-precision measurements of wetland sediment elevation: I. Recent improvements to the sedimentation-erosion table. Journal of Sedimentary Research 72: 730–733.

  • Cahoon, D.R., and J.C. Lynch. 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. Mangroves and Salt Marshes 1 (3): 173–186.

    Google Scholar 

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R.D. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002b. High-precision measurements of wetland sediment elevation: II The rod surface elevation table. Journal of Sedimentary Research 72 (5): 734–739.

    CAS  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, and A.N. Powell. 1996. Marsh vertical accretion in a southern California estuary, USA. Estuarine Coastal and Shelf Science 43 (1): 19–32.

    CAS  Google Scholar 

  • Cahoon, D.R., J.H. Olker, A.G. Yeates, G.R. Guntenspergen, J.B. Grace, Adamowicz, S. C., S. Anisfeld, A.H. Baldwin, N. Barrett, L. Beckett, A. Benzecry, L.K. Blum, D.M. Burdick, W. Crouch, M.C. Ekberg, S. Fernald, K.W. Grimes, J. Grzyb, E.K. Hartig, D.A. Kreeger, M. Larson, S. Lerberg, J.C. Lynch, N. Maher, M. Maxwell-Doyle, L.R. Mitchell, J. Mora, V. O’Neill, A. Padeletti, D. Prosser, T. Quirk, K.B. Raposa, W.G. Reay, D. Siok, C. Snow, A. Starke, L. Staver, J.C. Stevenson, and V. Turner. 2019. Hurricane Sandy impacts on coastal wetland resilience. U.S. Geological Survey Open-File Report 2018–1142. doi: https://doi.org/10.3133/ofr20181142.

  • Cahoon, D.R., D.J. Reed, and J.W.J. Day. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128 (1-2): 1–9.

    Google Scholar 

  • Cahoon, D.R., D.J. Reed, A.S. Kolker, M.M. Brinson, J.C. Stevenson, S. Riggs, R.R. Christian, E. Reyes, C. Voss, and D. Kunz. 2009. Chapter 4: Coastal wetland sustainability. In Coastal sensitivity to sea-level rise: A focus on the mid-Atlantic region, ed. J.G. Titus, 57–72. Washington, D.C.: U.S. Climate Change Science Program.

    Google Scholar 

  • Cahoon, D.R., and R.E. Turner. 1989. Accretion and canal impacts in a rapidly subsiding wetland.II. Feldspar marker horizon techniques. Estuaries 12: 260–268.

  • Callaway, J.C., R.D. DeLaune, and W.H. Patrick. 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. Journal of Coastal Research 13: 181–191.

    Google Scholar 

  • Chmura, G.L., A. Coffey, and R. Crago. 2001. Variation in surface sediment deposition on salt marshes in the Bay of Fundy. Journal of Coastal Research 17: 221–227.

    Google Scholar 

  • Chmura, G.L., and G.A. Hung. 2004. Controls on salt marsh accretion: A test in salt marshes of Eastern Canada. Estuaries 27 (1): 70–81.

    Google Scholar 

  • Christian, R.R., L.E. Stasavich, C.R. Thomas, and M.M. Brinson. 2000. Reference is a moving target in sea-level controlled wetlands. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 805–925. Dordrecht, Netherlands: Kluwer Academic Publishers.

  • Christiansen, T. 1998. Sediment deposition on a tidal salt marsh. Ph.D: Dissertation, University of Virginia Charlottesville, VA.

    Google Scholar 

  • Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine Coastal and Shelf Science 50 (3): 315–331.

    Google Scholar 

  • Day, J.W., D.F. Boesch, E.J. Clairain, G.P. Kemp, S.B. Laska, W.J. Mitsch, K. Orth, H. Mashriqui, D.J. Reed, L. Shabman, C.A. Simenstad, B.J. Streever, R.R. Twilley, C.C. Watson, J.T. Wells, and D.F. Whigham. 2007. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science 315 (5819): 1679–1684. https://doi.org/10.1126/science.1137030.

    Article  CAS  Google Scholar 

  • Delaune, R.D., W.H. Patrick, and R.J. Buresh. 1978. Sedimentation-rates determined by Cs-137 dating in a rapidly accreting salt-marsh. Nature 275 (5680): 532–533.

    CAS  Google Scholar 

  • Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences of the United States of America 98 (25): 14218–14223.

    CAS  Google Scholar 

  • Fagherazzi, S., S.C. Anisfeld, L.K. Blum, E.V. Long, R.A. Feagin, A. Fernandes, W.S. Kearney, and K. Williams. 2019. Sea level rise and the dynamics of the marsh-upland boundary. Frontiers in Environmental Sciences 7: 25. https://doi.org/10.3389/fenvs.2019.00025.

    Article  Google Scholar 

  • Ganju, N.K., M.L. Kirwan, P.J. Dickhudt, G.R. Guntenspergen, D.R. Cahoon, and K.D. Kroeger. 2015. Sediment transport-based metrics of wetland stability. Geophysical Research Letters 42 (19): 7992–8000.

    Google Scholar 

  • Gardener, L.R., B.R. Smith, and W.K. Michener. 1992. Soil evolution along a forest-salt marsh transect under a regime of slowly rising sea level, southeastern United States. Geoderma 55 (1-2): 141–157.

    Google Scholar 

  • Hackney, C.T., and W.J. Cleary. 1987. Saltmarsh loss in southeastern North Carolina lagoons: Importance of sea level rise and inlet dredging. Journal of Coastal Research 3: 93–98.

    Google Scholar 

  • Hatton, R.S., R.D. Delaune, and W.H. Patrick Jr. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography 28 (3): 494–502.

    Google Scholar 

  • Hmieleski, J.I. 1994. High marsh-forest transitions in a brackish marsh: The effects of slope. MS Thesis, East Carolina University Greenville, NC.

  • Kastler, J.A., and P.L. Wiberg. 1996. Sedimentation and boundary change in Virginia salt marshes. Estuarine Coastal and Shelf Science 42 (6): 683–700.

    Google Scholar 

  • Kaye, C.A., and E.S. Barghoorn. 1964. Late Quaternary sea-level change and crustal rise at Boston, MA, with notes on autocompaction of peat. Geological Society of America Bulletin 75 (2): 63–80.

    Google Scholar 

  • Kearney, W.S., A. Fernandes, and S. Fagherazzi. 2019. Sea-level rise and storm surges structure coastal forests into persistence and regeneration niches. PLoS One 14 (5): e0215977.

    Google Scholar 

  • Kelley, J.T., W.R. Gehrels, and D.F. Belknap. 1995. Late Holocene relative sea-level rise and the geological development of tidal marshes at Wells, Maine, USA. Journal of Coastal Research 11: 136–153.

    Google Scholar 

  • Kim, G., N. Hussain, T.M. Church, and W.L. Carey. 1997. The fallout isotope Bi-207 in a Delaware salt marsh: A comparison with Pb-210 and Cs-137 as a geochronological tool. Science of the Total Environment 196 (1): 31–41.

    CAS  Google Scholar 

  • Kirwan, M.L., and L.K. Blum. 2011. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8 (1): 987–993. https://doi.org/10.5194/bg-8-1-2011.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., R.R. Christian, L.K. Blum, and M.M. Brinson. 2012. On the relationship between sea level and Spartina alterniflora production. Ecosystems 15 (1): 140–147. https://doi.org/10.1007/s10021-011-9498-7.

    Article  Google Scholar 

  • Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Fagherazzi. 2016a. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6 (3): 253–260.

    Google Scholar 

  • Kirwan, M.L., D.D. Walters, W.G. Reay, and J.A. Carr. 2016b. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophysical Research Letters 43 (9): 4366–4373. https://doi.org/10.1002/2016GL068507.

    Article  Google Scholar 

  • Kraft, J.C., H.I. Yi, and M. Khalequzzaman. 1992. Geologic and human-factors in the decline of the tidal salt-marsh lithosome - the Delaware estuary and Atlantic coastal zone. Sedimentary Geology 80 (3-4): 233–246.

    Google Scholar 

  • Leonard, L.A., and D.J. Reed. 2002. Hydrodynamics and sediment transport through tidal marsh canopies. Journal of Coastal Research 36: 459–469.

    Google Scholar 

  • Lynch, J.C., P. Hensel, and D. Cahoon. 2015. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics. National Park Service Natural Resource Report NPS/NCBN/NRR-2015/1078.

  • Marani, M., A. D'Alpaos, S. Lanzoni, and M. Santalucia. 2011. Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters 38. doi: https://doi.org/10.1029/2011GLO48995.

  • McCaffrey, R.J., and J. Thomson. 1980. A record of the accumulation of sediment and trace metals in a Connecticut salt marsh. Advances in Geophysics 22: 165–236.

    CAS  Google Scholar 

  • McGlathery, K., and R.R. Christian. 2020. Water quality sampling - integrated measurements for the Virginia Coast, 1992-2019. Virginia Coast Reserve Long-Term Ecological Research Project Data Publication knb-lter-vcr.247.14. doi: https://doi.org/10.6073/pasta/db7f8fe720ddfcdfab1352adc9c22702.

  • McGlathery, K., K. Sundbäck, and I.C. Anderson. 2007. Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter. Marine Ecology Progress Series 348: 1–18. https://doi.org/10.3354/meps07132.

    Article  CAS  Google Scholar 

  • McLoughlin, S.M., P.L. Wiberg, I. Safak, and K.J. McGlathery. 2015. Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries and Coasts 38 (2): 629–638. https://doi.org/10.1007/s12237-014-9841-2.

    Article  Google Scholar 

  • Meade, R.H. 1982. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States. Journal of Geology 90 (3): 235–252.

    Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10): 2869–2877.

    Google Scholar 

  • Mudd, S.M., S.M. Howell, and J.T. Morris. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine Coastal and Shelf Science 82 (3): 377–389. https://doi.org/10.1016/j.ecss.2009.01.028.

    Article  CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration. 2009. High sea level along U.S. Atlantic Coast due to ocean current and wind changes. ScienceDaily. August 31, 2009. www.sciencedaily.com/releases/2009/08/090831132943.htm.

  • Nolte, S., E.C. Koppenaal, P. Esselink, K.S. Dijkema, M. Schuerch, A.V. DeGroot, J.P. Bakker, and S. Temmerman. 2013. Measuring sedimentation in tidal marshes: A review on methods and their applicability in biogeomorphological studies. Journal of Coastal Conservation 17 (3): 301–325. https://doi.org/10.1007/s11852-013-0238-3.

    Article  Google Scholar 

  • Nuttle, W.K., H.F. Hemond, and K.D. Stolzenbach. 1990. Mechanisms of water storage in salt marsh sediments - the importance of dilation. Hydrological Processes 4 (1): 1–13.

    Google Scholar 

  • Nyman, J.A., R.J. Walters, R.D. Delaune, and W.H. Patrick Jr. 2006. Marsh vertical accretion via vegetative growth. Estuarine Coastal and Shelf Science 69 (3-4): 370–380. https://doi.org/10.1016/j.ecss.2006.05.041.

    Article  Google Scholar 

  • Orson, R.A., R.S. Warren, and W.A. Niering. 1998. Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh. Estuarine Coastal and Shelf Science 47 (4): 419–429.

    Google Scholar 

  • Paquette, C.H., K.L. Sundberg, R.M.J. Boumans, and G.L. Chmura. 2004. Changes in salt marsh surface elevation due to variability in evapotranspiration and tidal flooding. Estuaries 27 (1): 82–89.

    Google Scholar 

  • Peterson, P.M., K. Romaschenko, Y.H. Arrieta, and J.M. Saarela. 2014. A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). Taxon 63 (6): 1212–1243.

    Google Scholar 

  • Rahmstorf, S. 2007. A semi-empirical approach to projecting future sea-level rise Science 315: 368–370. doi: https://doi.org/10.1126/science.1135456, A Semi-Empirical Approach to Projecting Future Sea-Level Rise.

  • Raposa, K.B., M.L. Cole Ekberg, D.M. Burdick, N.T. Ernst, and S.C. Adamowicz. 2016. Elevation change and the vulnerability of Rhode Island (USA) salt marshes to sea-level rise. Regional Environmental Change 17 (2): 389–397. https://doi.org/10.1007/s10113-016-1020-5.

    Article  Google Scholar 

  • Redfield, A.C. 1972. Development of a New England salt marsh. Ecological Monographs 42 (2): 201–237.

    Google Scholar 

  • Reed, D.J. 2002. Sea-level rise and coastal marsh sustainability: Geological and ecological factors in the Mississippi delta plain. Geomorphology 48 (1-3): 233–243.

    Google Scholar 

  • Reed, D.J., and D.R. Cahoon. 1992. The relationship between marsh surface topography, hydroperiod, and growth of Spartina alterniflora in a deteriorating Louisiana salt-marsh. Journal of Coastal Research 8: 77–87.

    Google Scholar 

  • Ricker, L.D. 1999. Resistance to state change by coastal ecosystems under conditions of rising sea level. MS Thesis, East Carolina University Greenville, NC.

  • Rott, J., D. Floricioiu, J. Wuite, S. Scheiblauer, T. Nagler, and M. Kern. 2014. Mass changes of outlet glaciers along the Nordensjköld Coast, northern Nataractic Peninsula, based on TanDEM-X satellite measurements. Geophysical Research Letters 41 (22): 8123–8129. https://doi.org/10.1002/2014GL061613.

    Article  Google Scholar 

  • Schmidtko, S., K.J. Heywood, A.F. Thompson, and S. Aoki. 2014. Multidecadal warming of Antarctic waters. Science 346 (6214): 1227–1231. https://doi.org/10.1126/science.1256117.

    Article  CAS  Google Scholar 

  • Scholten, M., and J. Rozema. 1990. The competitive ability of Spartina angilica on Dutch saltmarshes. In Spartina angilica: A research review, 2., ed. A.J. Gray and P.E.M. Benham, 39–47. London UK: Institute of Terrestrial Ecology Research Publication. Natural Environment Research Council and HMSO.

  • Smith, S.M. 2009. Multi-decadal changes in salt marshes of Cape Cod, MA: Photographic analyses of vegetation loss, species shifts, and geomorphic change. Northeastern Naturalist 16 (2): 183–208.

    Google Scholar 

  • Smith, S.M. 2015. Vegetation change in salt marshes of Cape Cod National Seashore (Massachusetts, USA) between 1984 and 2013. Wetlands 35 (1): 127–136. https://doi.org/10.1007/s13157-014-0601-7.

    Article  Google Scholar 

  • Smith, T.J.I., and D.R. Cahoon. 2003. Wetland sediment elevation in the Florida Everglades: response to surface water stage variation. In Proceedings of the International Conference on Coastal Sediments 2003. Clearwater Beach, FL: World Scientific Publishing and East Meets West Productions.

  • Stasavich, L.E. 1999. Hydrodynamics of a coastal wetland ecosystem. MS Thesis: East Carolina University Greenville, NC.

    Google Scholar 

  • Stevenson, J.C., M. Kearney, and E. Pendleton. 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Marine Geology 67 (3-4): 213–235.

    Google Scholar 

  • Sweet, W.V., R.E. Kopp, C.P. Weaver, J. Obeysekera, R.M. Horton, E.R. Thieler, and C. Zervas. 2017. Global and regional sea level rise scenarios for the United States. National Oceanic and Atmospheric Administration NOS CO-OPS 083.

  • Thomas, C., and C.R. Carlson. 1999. GPS elevations of VCR/LTER marshes. Virginia Coast Reserve Long-Term Ecological Research Project Data Publication http://www.vcrlter.virginia.edu/knb/metacat/knb-lter-vcr.66.17/lter.

  • Turaski, S.J. 2002. Spatial and temporal controls on saturated overland flow in a regularly flooded salt marsh. MS Thesis, University of Virginia Charlottesville, VA.

  • Turner, E.R., C.S. Milan, and E.M. Swenson. 2006. Recent volumetric changes in salt marsh soils. Estuarine, Coastal and Shelf Science 69 (3-4): 352–359.

    Google Scholar 

  • Turner, E.R., E.M. Swenson, and C.S. Milan. 2000. Organic and inorganic contributions to vertical accretion in salt marsh sediments. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 583–595. Dordrecht, The Netherlands: Kluwer Academic Publishers.

  • Whelan, K.R.T., T.J. Smith, D.R. Cahoon, J.C. Lynch, and G.H. Anderson. 2005. Groundwater control of mangrove surface elevation: Shrink and swell varies with soil depth. Estuaries and Coasts 28 (6): 833–843.

    Google Scholar 

  • Wiberg, P., S. Fagherazzi, and M.L. Kirwan. 2020. Improving predictions of salt marsh evolution through better integration of data and models. Annual Review of Marine Science 12: 6.1–6.25.

    Google Scholar 

  • Willis, P. 2009. Hydrologic controls on marsh surface elevation and accretion. MA Thesis, University of Virginia Charlottesville, VA.

Download references

Acknowledgments

This paper could not have been written without contributions of Mark M. Brinson to the experimental design, data collection, and early drafts of the manuscript before his death. We dedicate this paper to Mark’s memory. We gratefully acknowledge the assistance of numerous students and volunteers for help with field measurements, especially Patricia Willis and Arthur Schwarzschild. James Lynch and Aaron Mills assisted with the installation of SET and RSET stations. The Virginia Coast Reserve of the Nature Conservancy provided access to the study site. We wish to thank James Lynch, Aaron Mills, and two anonymous individuals for their review comments. This material is based in part upon work supported by the National Science Foundation under Grants No. BSR-8702333-06, DEB-9211772, DEB-9411974, DEB-0080381, DEB-0621014, DEB-1237733, and DEB-1832221 to the Virginia Coast Reserve Long-Term Ecological Research Program. Use of trade, product, or firm names does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda K. Blum.

Additional information

Communicated by Mead Allison

Electronic Supplementary Material

ESM 1

(DOCX 712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blum, L.K., Christian, R.R., Cahoon, D.R. et al. Processes Influencing Marsh Elevation Change in Low- and High-Elevation Zones of a Temperate Salt Marsh. Estuaries and Coasts 44, 818–833 (2021). https://doi.org/10.1007/s12237-020-00796-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00796-z

Keywords

Navigation