Skip to main content

Advertisement

Log in

Sediment Budget Estimates for a Highly Impacted Embayment with Extensive Wetland Loss

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

External sediment supply is an important control on wetland morphology and vulnerability to storms, sea-level rise, and land use change. Constraining sediment supply and net budgets is difficult due to multiple timescales of variability in hydrodynamic forcing and suspended sediment concentrations, as well as the fundamental limitations of measurement and modeling technologies. We used two independent observational campaigns and one hydrodynamic modeling effort to estimate the sediment supply to Jamaica Bay, New York, USA, an urbanized embayment with a history of extensive wetland loss. We found that all three estimates indicate a net import to the system, ranging from 36 to 74 kt/year, with a mean estimate of 55 kt/year ± 31 kt/year, which is consistent with a prior estimate derived from radionuclide tracers. Net sediment import is controlled by flood-ebb asymmetry in bed shear stress, which results in higher suspended sediment concentrations on flood tide relative to ebb. This indicates a seaward source of sediment that is resuspended by waves in the coastal ocean, likely offshore marine deposits or potentially from the adjacent Hudson River estuary. Despite the net sediment import, a simple sediment budget suggests that the rate of supply is not sufficient to maintain the present geomorphic planform of the system relative to sea-level rise. The convergent estimates from independent methods provide reasonable guidance as context for sediment-based restoration efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81 (2): 169–193.

    Article  Google Scholar 

  • Barnard, P.L., D.H. Schoellhamer, B.E. Jaffe, and L. McKee. 2013. Sediment transport in the San Francisco Bay coastal system: an overview. Marine Geology 345: 3–17.

    Article  Google Scholar 

  • Benotti, M. J., I. Abbene, and S. A. Terracciano (2007), Nitrogen loading in Jamaica Bay, Long Island, New York: predevelopment to 2005 Rep. 2328–0328, Geological Survey (US).

  • Black, F. R. (1981), Jamaica Bay: a history, edited, US Department of Interior, Washington DC.

  • Boldt, J. A. (2015), From mobile ADCP to high-resolution SSC: a cross-section calibration tool, paper presented at 3rd Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling.

  • Booij, N., R. Ris, and L.H. Holthuijsen. 1999. A third-generation wave model for coastal regions: 1 Model description and validation. Journal of geophysical research: Ocean 104 (C4): 7649–7666.

    Article  Google Scholar 

  • Cartwright, R. A., and A. E. Simonson (2019), Estimating sediment flux to Jamaica Bay, New York Rep. 2328–0328, US Geological Survey.

  • Castagno, K.A., A.M. Jiménez-Robles, J.P. Donnelly, P.L. Wiberg, M.S. Fenster, and S. Fagherazzi. 2018. Intense storms increase the stability of tidal bays. J Geophysical Research Letters 45 (11): 5491–5500.

    Article  Google Scholar 

  • Chant, R.J., D. Fugate, and E. Garvey. 2011. The shaping of an estuarine superfund site: roles of evolving dynamics and geomorphology. Estuaries and Coasts 34 (1): 90–105.

    Article  CAS  Google Scholar 

  • Clarke, R. C. (2018) Vertical sediment accretion in Jamaica Bay Wetlands, New York, Louisiana State University and Agriculture and Mechanical College

  • Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490 (7420): 388–392.

    Article  CAS  Google Scholar 

  • Donatelli, C., N.K. Ganju, S. Fagherazzi, and N. Leonardi. 2018. Seagrass impact on sediment exchange between tidal flats and salt marsh, and the sediment budget of shallow bays. Geophysical Research Letters 45 (10): 4933–4943.

    Article  Google Scholar 

  • Edwards, T. K., G. D. Glysson, H. P. Guy, and V. W. Norman (1999), Field methods for measurement of fluvial sediment, US Geological Survey Denver, CO.

  • Fagherazzi, G., P. Mariotti, L. Wiberg, and K.J. McGlathery. 2013a. Marsh collapse does not require sea level rise. Oceanography 26 (3): 70–77.

    Article  Google Scholar 

  • Fagherazzi, S., G. Mariotti, P. Wiberg, and K. McGLATHERY. 2013b. Marsh collapse does not require sea level rise. Oceanography 26 (3): 70–77.

    Article  Google Scholar 

  • Fagherazzi, S., and A. Priestas. 2010. Sediments and water fluxes in a muddy coastline: interplay between waves and tidal channel hydrodynamics. Earth Surface Processes and Landforms 35 (3): 284–293.

    Article  CAS  Google Scholar 

  • Ford, M.A., D.R. Cahoon, and J.C. Lynch. 1999. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material1. Ecological Engineering 12 (3–4): 189–205.

    Article  Google Scholar 

  • Friedrichs, C.T., and J.E. Perry. 2001. Tidal salt marsh morphodynamics: a synthesis. J. Coastal. Res. 7-37.

  • Ganju, N.K., Z. Defne, M.L. Kirwan, S. Fagherazzi, A. D’Alpaos, and L. Carniello. 2017. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature Communications 8 (1): 14156.

    Article  CAS  Google Scholar 

  • Ganju, N.K., N.J. Nidzieko, and M.L. Kirwan. 2013. Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model. Journal of Geophysical Research: Earth Surface 118 (4): 2045–2058.

    Google Scholar 

  • Goodbred, S.L., Jr., and A.C. Hine. 1995. Coastal storm deposition: salt-marsh response to a severe extratropical storm, March 1993, west-central Florida. Geology 23 (8): 679–682.

    Article  Google Scholar 

  • Haidvogel, D.B., H. Arango, W.P. Budgell, B.D. Cornuelle, E. Curchitser, E. Di Lorenzo, K. Fennel, W.R. Geyer, A.J. Hermann, and L. Lanerolle. 2008. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics 227 (7): 3595–3624.

    Article  Google Scholar 

  • Hartig, E. K., V. Gornitz, A. Kolker, F. Mushacke, and D. Fallon (2002), Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City, Wetlands, 22(1), 71–89.

  • Hoitink, A., and P. Hoekstra. 2005. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment. Coastal Engineering 52 (2): 103–118.

    Article  Google Scholar 

  • Holdredge, C., M.D. Bertness, and A.H. Altieri. 2009. Role of crab herbivory in die-off of New England salt marshes. Conservation Biology 23 (3): 672–679.

    Article  Google Scholar 

  • Hopkinson, C.S., J.T. Morris, S. Fagherazzi, W.M. Wollheim, and P.A. Raymond. 2018. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. Journal of Geophysical Research: Biogeosciences 123 (8): 2444–2465.

    CAS  Google Scholar 

  • Kemp, A.C., T.D. Hill, C.H. Vane, N. Cahill, P.M. Orton, S.A. Talke, A.C. Parnell, K. Sanborn, and E.K. Hartig. 2017. Relative sea-level trends in New York City during the past 1500 years. The Holocene 27 (8): 1169–1186.

    Article  Google Scholar 

  • Kim, S.-C., C.T. Friedrichs, J.P.Y. Maa, and L.D. Wright. 2000. Estimating bottom stress in tidal boundary layer from Acoustic Doppler Velocimeter data. Journal of Hydraulic Engineering 126 (6): 399–406.

    Article  Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature Communications 504 (7478): 53–60.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Fagherazzi. 2016. Overestimation of marsh vulnerability to sea-level rise. Nature Climate Change 6 (3): 253–260.

    Article  Google Scholar 

  • Kopp, R.E. 2013. Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? Geophysical Research Letters 40 (15): 3981–3985.

    Article  Google Scholar 

  • Leonardi, N., N.K. Ganju, and S. Fagherazzi. 2016. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences 113 (1): 64–68.

    Article  CAS  Google Scholar 

  • Malone, T.C., and M.B. Chervin. 1979. The production and fate of phytoplankton size fractions in the plume of the Hudson River, New York Bight. Limnology and Oceanography 24 (4): 683–696.

    Article  CAS  Google Scholar 

  • Mariotti, G., and S. Fagherazzi (2013), Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise, Proceedings of the National Academy of Sciences, 201219600.

  • McSweeney, J.M., R.J. Chant, and C.K. Sommerfield. 2016. Lateral variability of sediment transport in the Delaware Estuary. Journal of Geophysical Research: Oceans 121 (1): 725–744.

    Google Scholar 

  • Miller, K.G., R.E. Kopp, B.P. Horton, J.V. Browning, and A.C. Kemp. 2013. A geological perspective on sea-level rise and its impacts along the US mid-Atlantic coast. Earth’s Future 1 (1): 3–18.

    Article  Google Scholar 

  • Morris, J.T., D.C. Barber, J.C. Callaway, R. Chambers, S.C. Hagen, C.S. Hopkinson, B.J. Johnson, P. Megonigal, S.C. Neubauer, and T. Troxler. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth's future 4 (4): 110–121.

    Article  Google Scholar 

  • Nitsche, F., W. Ryan, S. Carbotte, R. Bell, A. Slagle, C. Bertinado, R. Flood, T. Kenna, and C. McHugh (2007), Regional patterns and local variations of sediment distribution in the Hudson River Estuary, Estuarine, Coastal Shelf Science, 71(1–2), 259–277.

  • Parker, B. B. (1991), Tidal hydrodynamics, John Wiley & Sons.

  • Peteet, D.M., J. Nichols, and T. Kenna. 2018. Sediment starvation destroys New York City marshes’ resistance to sea level rise [STUB]. Proceedings of the National Academy of Sciences 115 (41): 10281–10286.

    Article  CAS  Google Scholar 

  • Ralston, D.K., and W.R. Geyer. 2017. Sediment transport time scales and trapping efficiency in a tidal river. Journal of Geophysical Research: Earth Surface 122 (11): 2042–2063.

    Google Scholar 

  • Ralston, D.K., W.R. Geyer, and J.C. Warner. 2012a. Bathymetric controls on sediment transport in the Hudson River estuary: lateral asymmetry and frontal trapping. Journal of Geophysical Research: Oceans 117 (C10).

  • Ralston, D.K., W.R. Geyer, and J.C. Warner. 2012b. Bathymetric controls on sediment transport in the Hudson River estuary: lateral asymmetry and frontal trapping. Journal of Geophysical Research: Oceans 117 (C10).

  • Ralston, D.K., J.C. Warner, W.R. Geyer, and G.R. Wall. 2013. Sediment transport due to extreme events: the Hudson River estuary after tropical storms Irene and lee. Geophysical Research Letters 40 (20): 5451–5455.

    Article  Google Scholar 

  • Reed, D. 2002. Understanding tidal marsh sedimentation in the Sacramento-San Joaquin delta, California. J. Coastal. Res. 36 (sp1): 605–611.

    Article  Google Scholar 

  • Renfro, A., J. Cochran, D. Hirschberg, and S. Goodbred (2010), Natural radionuclides (234Th, 7Be and 210Pb) as indicators of sediment dynamics in Jamaica Bay, New York Rep., Natural Resource Technical Report NPS/NERO/NRTR—2010/324. Fort Collins, Colorado.

  • Renfro, A. A., J. K. Cochran, D. J. Hirschberg, H. J. Bokuniewicz, and S. L. Goodbred Jr (2016), The sediment budget of an urban coastal lagoon (Jamaica Bay, NY) determined using 234Th and 210Pb, Estuarine, Coastal Shelf Science, 180, 136–149.

  • Ruhl, C. A., and M. R. Simpson (2005), Computation of discharge using the index-velocity method in tidally affected areas, US Department of the Interior, US Geological Survey.

  • Sanderson, E.W. 2016. Cartographic evidence for historical geomorphological change and wetland formation in Jamaica Bay, New York. Northeastern Naturalist 23 (2): 277–304.

    Article  Google Scholar 

  • Shchepetkin, A.F., and J.C. McWilliams. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling 9 (4): 347–404.

    Article  Google Scholar 

  • Swanson, R.L., and R.E. Wilson. 2008. Increased tidal ranges coinciding with Jamaica Bay development contribute to marsh flooding. J. Coastal. Res. 1565-1569.

  • Warner, J.C., B. Armstrong, R. He, and J.B. Zambon. 2010. Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Modelling 35 (3): 230–244.

    Article  Google Scholar 

  • Weston, N.B. 2014. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries and Coasts 37 (1): 1–23.

    Article  Google Scholar 

  • Wong, K.-C., and R.E. Wilson. 1984. Observations of low-frequency variability in Great South Bay and relations to atmospheric forcing. Journal of Physical Oceanography 14 (12): 1893–1900.

    Article  Google Scholar 

  • Wright, S. A., D. J. Topping, and C. A. Williams (2010), Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers, paper presented at Joint Federal Interagency Conference 2010: Hydrology and sedimentation for a changing future: existing and emerging issues.

  • Zaggia, L., G. Lorenzetti, G. Manfé, G.M. Scarpa, E. Molinaroli, K.E. Parnell, J.P. Rapaglia, M. Gionta, and T. Soomere. 2017. Fast shoreline erosion induced by ship wakes in a coastal lagoon: field evidence and remote sensing analysis. PLoS One 12 (10): e0187210.

    Article  Google Scholar 

Download references

Acknowledgments

Support for RJC was provided by the grant from the Department of Interior Hurricane Sandy Recovery program and from a National Science Foundation Coastal SEES grant (1325258). RJC thanks Elias Hunter and Chip Haldeman for their field and computational skills and Ken Roma for his dedication at the helm. Support for DKR was provided by NSF Coastal SEES award OCE-1325136. NKG, AES, RAC, and Marine Parkway data collection were funded by the USGS Coastal and Marine Geology Program and the Department of the Interior Hurricane Sandy Recovery Program (GS2-2D). The authors thank the three anonymous reviewers for their time and for helping us improve the clarity of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Chant.

Additional information

Communicated by Paul A. Montagna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chant, R.J., Ralston, D.K., Ganju, N.K. et al. Sediment Budget Estimates for a Highly Impacted Embayment with Extensive Wetland Loss. Estuaries and Coasts 44, 608–626 (2021). https://doi.org/10.1007/s12237-020-00784-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00784-3

Keywords

Navigation