Adamowicz, S.C., and C.T. Roman. 2005. New England salt marsh pools: A quantitative analysis of geomorphic and geographic features. Wetlands 25 (2): 279–288.
Google Scholar
Alber, M. 2018. Long-term water quality monitoring in the Altamaha, Doboy and Sapelo sounds and the Duplin River near Sapelo Island, Georgia from November 2013 to December 2015. Georgia Coastal Ecosystems LTER Project, University of Georgia, Long Term Ecological Research Network. https://doi.org/10.6073/pasta/c55e5b0e279ea54151517cabe894a44b
Alber, M., E.M. Swenson, S.C. Adamowicz, and I.A. Mendelssohn. 2008. Salt marsh dieback: An overview of recent events in the US. Estuarine, Coastal, and Shelf Science 80 (1): 1–11.
Google Scholar
Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81 (2): 169–193.
Google Scholar
Browne, J.P. 2017. Long-term erosional trends along channelized salt marsh edges. Estuaries and Coasts 40 (6): 1566–1575.
Google Scholar
Burns, C. 2018. Historical analysis of 70 years of salt marsh change at three coastal LTER sites. M.S. Thesis. University of Georgia, Athens, GA.
Church, J.A., and N.J. White. 2011. Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics 32 (4–5): 585–602.
Google Scholar
Coverdale, T.C., N.C. Herrmann, A.H. Altieri, and M.D. Bertness. 2013. Latent impacts: The role of historical human activity in coastal habitats. Frontiers in Ecology and the Environment 11 (2): 69–74.
Google Scholar
Crotty, S.M., C. Angelini, and M.D. Bertness. 2017. Multiple stressors and the potential for synergistic loss of New England salt marshes. PLoS One 12 (8): e0183058.
Google Scholar
D’Alpaos, A., S. Lansoni,, M. Marani, and A., Rinaldo. 2010. On the tidal prism-channel area relations. Journal of Geophysical Research 115(F1).
Day, J.W., F. Scarton, A. Rismondo, and D. Are. 1998. Rapid deterioration of a salt marsh in Venice lagoon, Italy. Journal of Coastal Research 14 (2): 583–590.
Google Scholar
Dewberry and Davis LLC. 2015. Eastern Shore Virginia QL2 LiDAR BBA: Report Produced for US. Geological Society.
Dolan, R., M. Fenster, and S.J. Home. 1991. Temporal analysis of shoreline recession and accretion. Journal of Coastal Research 7(3): 723-744
Downs, L.L., R.J. Nicholls, S.P. Leatherman, and J. Hautzenroder. 1994. Historic evolution of a marsh island: Bloodsworth Island, Maryland. Journal of Coastal Research 10 (4): 1031–1044.
Google Scholar
Eisma, D. 1998. Intertidal deposits: River mouths, tidal flats, and coastal lagoons. Boca Raton: CRC Press.
Google Scholar
Erwin, R.M., G.M. Sanders, and D.J. Prosser. 2004. Changes in lagoonal marsh morphology at selected northeastern Atlantic coast sites of significance to migratory water birds. Wetlands 24 (4): 891–903.
Google Scholar
Fagherazzi, S. 2013. The ephemeral life of a salt marsh. Geology 41 (8): 943–944.
Google Scholar
Fagherazzi, S., G. Mariotti, P.L. Wiberg, and K.J. McGlathery. 2013. Marsh collapse does not require sea level rise. Oceanography 26 (3): 70–77.
Google Scholar
Field, C.R., C. Gjerdrum, and C.S. Elphick. 2016. Forest resistance to sea-level rise prevents landward migration of tidal marsh. Biological Conservation 201: 363–369.
Google Scholar
Ganju, N.K. 2019. Marshes are the new beaches: Integrating sediment transport into restoration planning. Estuaries and Coasts: 1–10.
Ganju, N., Z. Defne, M.L. Kirwan, S. Fagherazzi, A. D’Alpaos, and L. Caniello. 2017. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature Communications 8 (1): 14156.
CAS
Google Scholar
Harshberger, J.W. 1916. The origin and vegetation of salt marsh pools. Proceedings of the American Philosophical Society. 55 (6): 481–484.
Google Scholar
Hartman, J.M. 1988. Recolonization of small disturbance patches in a New England salt marsh. American Journal of Botany 75 (11): 1625–1631.
Google Scholar
Hayden, B.P., and N.R. Hayden. 2003. Decadal and century-long changes in storminess at long-term ecological research sites. In Climate variability and ecosystem response at long-term ecological research sites, ed. D. Greenland, D.G. Goodin, and R.S. Smith, 262–285. New York: Oxford University Press.
Google Scholar
Hladik, C., and M. Alber. 2012. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sensing of Environment 121: 224–235.
Google Scholar
Hladik, C., and M. Alber. 2014. Classification of salt marsh vegetation using edaphic and remote sensing-derived variables. Estuarine, Coastal, and Shelf-Science 141: 47–57.
Google Scholar
Hopkinson, C., and V. Valentine. 2017. PIE LTER 2005 Digital elevation model for the Plum Island Sound estuary, Massachusetts, filtered grd, last filtered grid - Raster. Environmental Data Initiative. https://doi.org/10.6073/pasta/2a3cdfb8687ff511e599bcaa8e83482d Dataset accessed 7/23/2018.
Hopkinson, C., J.T. Morris, S. Fagherazzi, W.M. Wollheim, and P.A. Raymond. 2018. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. Journal of Geophysical Research: Biogeoscience 123: 2444–2465.
CAS
Google Scholar
Hughes, Z.J., D.M. FitzGerald, C.A. Wilson, S.C. Pennings, K. Więski, and A. Mahadevan. 2009. Rapid headward erosion of marsh creeks in response to relative sea level rise. Geophysical Research Letters 36 (3).
Kastler, J.A., and P.L. Wiberg. 1996. Sedimentation and boundary changes in Virginia salt marshes. Estuarine, Coastal and Shelf Science 42 (6): 683–700.
Google Scholar
Kearney, M.S., R.E. Grace, and J.C. Stevenson. 1988. Marsh loss in the Nanticoke estuary, Chesapeake Bay. Geographical Review 78 (2): 205–220.
Google Scholar
Kearney, M.S., A.S. Rogers, J.R. Townshend, E. Rizzo, D. Stutzer, J.C. Stevenson, and K. Sundborg. 2002. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos, Transactions American Geophysical Union 83 (16): 173–178.
Google Scholar
Kirwan, M.L., D.C. Walters, W.G. Reay, and J.A. Carr. 2016. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophysical Research Letters 43 (9): 4366–4373.
Google Scholar
Lawson, S.E., P.L. Wiberg, K.J. McGlathery, and D.C. Fugate. 2007. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon. Estuaries and Coasts 30 (1): 102–112.
Google Scholar
Mariotti, G. 2016. Revisiting salt marsh resilience to sea level rise: Are ponds responsible for permanent land loss? Journal of Geophysical Research: Earth Surface 121 (7): 1391–1407.
Google Scholar
Mariotti, G., and S. Fagherazzi. 2013. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proceedings of the National Academy of Sciences 110 (14): 5353–5356.
CAS
Google Scholar
McLoughlin, S.M., P.L. Wiberg, I. Safak, and K.J. McGlathery. 2015. Rates and forcing of marsh edge erosion in a shallow coastal bay. Estuaries and Coasts. 38 (2): 620–638.
Google Scholar
Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10): 2869–2877.
Google Scholar
Oppenheimer, M., B.C. Glavovic, J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad, R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. Sebesvari. 2019. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, ed. H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, and N.M. Weyer In press.
Google Scholar
Passeri, D.L., S.C. Hagen, S.C. Medeiros, M.V. Bilskie, K. Alizad, and D. Wang. 2015. The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earth's Future 3 (6): 159–181.
Google Scholar
Pennings, S.C., and C.L. Richards. 1998. Effects of wrack burial in salt-stressed habitats: Batis maritima in a Southwest Atlantic salt marsh. Ecography 21 (6): 630–638.
Google Scholar
Perillo, G.E., M. Ripley, M.C. Piccolo, and K. Dyer. 1996. The formation of tidal creeks in a salt marsh: New evidence from the Loyala Bay salt marsh, Rio Gallegos estuary, Argentina. Mangroves and Salt Marshes 1 (1): 37–46.
Google Scholar
PMSL 2019, Permanent Service for Mean Sea Level, National Oceanography Centre, Liverpool, England. https://www.psmsl.org/data/ Accessed 10/18/19
Redfield, A.C. 1972. Development of a New England salt marsh. Ecological Monographs 42 (2): 201–237.
Google Scholar
Romine, B.M., C.H. Fletcher, L.N. Frazer, A.S. Genz, M.M. Barbee, and S.C. Lim. 2009. Historical shoreline change, southeast Oahu, Hawaii; applying polynomial models to calculate shoreline change rates. Journal of Coastal Research 1236-1253.
Schepers, L., M. Kirwan, G. Guntenspergen, and S. Temmerman. 2017. Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnology and Oceanography 62 (1): 137–150.
Google Scholar
Schieder, N.W., D.C. Walters, and M.L. Kirwan. 2018. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries and Coasts 41 (4): 940–951.
Google Scholar
Schile, L.M., J.C. Callaway, J.T. Morris, D. Stralberg, V.T. Parker, and M. Kelly. 2014. Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS One 9 (2): e88760.
Google Scholar
Schwimmer, R.A. 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA. Journal of Coastal Research 17 (3): 672–683.
Google Scholar
Seminara, G. 2006. Meanders. Journal of Fluid Mechanics 554 (1): 271–297.
Google Scholar
Smith, J.A. 2013. The role of Phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PLoS One 8 (5): e65091.
Google Scholar
Stagg, C.L., and I.A. Mendelssohn. 2011. Controls on resilience and stability in a sediment-subsidized salt marsh. Ecological Applications 21 (5): 1731–1744.
Google Scholar
Temmerman, S., P. Meire, T.J. Bouma, P.M. Herman, T. Ysebaert, and H.J. De Vriend. 2013. Ecosystem-based coastal defense in the face of global change. Nature 504 (80): 79–83.
CAS
Google Scholar
Torio, D.D., and G.L. Chmura. 2013. Assessing coastal squeeze of tidal wetlands. Journal of Coastal Research 29 (5): 1049–1061.
Google Scholar
USACE. 2019. Cedar Island beneficial use of dredged material. US Army Corps of Engineers Norfolk District. https://www.nao.usace.army.mil/About/Projects/Cedar-Island-CAP-204/.
Vu, H.D., K. Więski, and S. Pennings. 2017. Ecosystem engineers drive creek formation in salt marshes. Ecology 98 (1): 162–174.
Google Scholar
Wasson, K., A. Woolfolk, and C. Fresquez. 2013. Ecotones as indicators of changing environmental conditions: Rapid migration of salt marsh-upland boundaries. Estuaries and Coasts 36 (3): 654–664.
CAS
Google Scholar
Watson, E.B., C. Wigland, E.W. Davey, H.M. Andrews, J. Bishop, and K.B. Raposa. 2017. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England. Estuaries and Coasts 40 (3): 662–681.
CAS
Google Scholar
Wilber, P. 1992. Case studies of the thin-layer disposal of dredged material – Gull Rock, North Carolina. Environmental Effects of Dredging D-92-3.
Wilson, C.A., Z.J. Hughes, D.M. FitzGerald, C.S. Hopkinson, V. Valentine, and A.S. Kolker. 2014. Saltmarsh pool and tidal creek morphodynamics: Dynamic equilibrium of northern latitude saltmarshes. Geomorphology 213: 99–115.
Google Scholar