Skip to main content
Log in

Contrasting Radium-Derived Groundwater Exchange and Nutrient Lateral Fluxes in a Natural Mangrove Versus an Artificial Canal

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Artificial canals may function differently than the natural coastal wetlands, floodplains, and estuaries they often replace. Here, we assess the impact of canal estate development on saline groundwater exchange (tidal pumping) and associated nutrient fluxes. Time series observations of short-lived radium isotopes and dissolved nutrients were performed in a canal estate and a nearby mangrove creek in subtropical Australia. A mass balance model based on 223Ra (1.3 ± 0.4 and 3.4 ± 0.9 cm day−1 in the mangrove and canal, respectively) and 224Ra (2.8 ± 3.0 and 5.4 ± 4.6 cm day−1) revealed tidally driven groundwater exchange rates were ~ 2-fold greater in the canal. Lateral fluxes of total dissolved nitrogen (TDN) from the nearby estuary into the canal estate were comparable with the mangrove creek (8.4 and 9.1 mmol m−2 day−1 in the mangrove and canal, respectively). Groundwater flows into the canal released ~ 5-fold more TDN than the mangrove. As expected, mangroves appear to be more efficient at retaining groundwater-derived nitrogen than vegetation-stripped, sandy canals. Overall, this study demonstrates that land reclamation for canal estate development not only drives losses of ecosystem services, but also modifies groundwater and related nutrient exchange with coastal surface waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adame, M.F., M.E. Roberts, D.P. Hamilton, C.E. Ndehedehe, V. Reis, J. Lu, M. Griffiths, G. Curwen, and M. Ronan. 2019. Tropical coastal wetlands ameliorate nitrogen export during floods. Frontiers in Marine Science 6: 671.

    Google Scholar 

  • Alongi, D.M. 1996. The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. Journal of Marine Research 54 (1): 123–148.

    CAS  Google Scholar 

  • Alongi, D.M. 2002. Present state and future of the world’s mangrove forests. Environmental Conservation 29 (3): 331–349.

    Google Scholar 

  • Alongi, D., L. Trott, G. Wattayakorn, and B. Clough. 2002. Below-ground nitrogen cycling in relation to net canopy production in mangrove forests of southern Thailand. Marine Biology 140: 855–864.

    CAS  Google Scholar 

  • Atkins, M.L., I.R. Santos, S. Ruiz-Halpern, and D.T. Maher. 2013. Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. Journal of Hydrology 493: 30–42.

    CAS  Google Scholar 

  • Balfour, A., Bost, M., Cook, C., Couper, L., Ellis, P., English, M., Gooding, E., Housego, R., Kaufmann, R., Posey, S., 2012. Water Quality in the Pine Knoll shores Residential Canal System.

    Google Scholar 

  • Balk, M., A.M. Laverman, J.A. Keuskamp, and H.J. Laanbroek. 2015. Nitrate ammonification in mangrove soils: a hidden source of nitrite? Frontiers in Microbiology 6: 166.

    Google Scholar 

  • Benfer, N.P., B.A. King, C.J. Lemckert, and S. Zigic. 2010. Modeling the effect of flow structure selection on residence time in an artificial canal system: case study. Journal of Waterway, Port, Coastal, and Ocean Engineering 136 (2): 91–96.

    Google Scholar 

  • BOM, 2017. Climate Statistics for Australian Locations. Coffs Harbour Meteorological Office Bureau of Meteorology.

  • BOM, 2019 Climate Statistics for Australian Locations.

  • Bureau of Statistics, A., 2017.

  • Burnett, W.C., and H. Dulaiova. 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity 69 (1-2): 21–35.

    CAS  Google Scholar 

  • Burnett, W., P. Aggarwal, A. Aureli, H. Bokuniewicz, J. Cable, M. Charette, E. Kontar, S. Krupa, K. Kulkarni, and A. Loveless. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment 367 (2-3): 498–543.

    CAS  Google Scholar 

  • Burnett, W.C., I.R. Santos, Y. Weinstein, P.W. Swarzenski, and B. Herut. 2007. Remaining uncertainties in the use of Rn-222 as a quantitative tracer of submarine groundwater discharge. IAHS Publication 312: 109.

    CAS  Google Scholar 

  • Burnett, W.C., R.N. Peterson, I.R. Santos, and R.W. Hicks. 2010. Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. Journal of Hydrology 380 (3-4): 298–304.

    CAS  Google Scholar 

  • Cardwell, R.D., E.P. Richey, and R.E. Nece. 1980. Fish, flushing, and water quality: their roles in marina design, Coastal Zone’80. ASCE: 84–103.

  • Cerdà-Domènech, M., V. Rodellas, A. Folch, and J. Garcia-Orellana. 2017. Constraining the temporal variations of Ra isotopes and Rn in the groundwater end-member: implications for derived SGD estimates. Science of the Total Environment 595: 849–857.

    Google Scholar 

  • Chen, X., F. Zhang, Y. Lao, X. Wang, J. Du, and I.R. Santos. 2018. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets? Journal of Geophysical Research: Oceans 123 (9): 6962–6979.

    CAS  Google Scholar 

  • Choi, J., and J.W. Harvey. 2000. Quantifying time-varying ground-water discharge and recharge in wetlands of the northern Florida Everglades. Wetlands 20 (3): 500–511.

    Google Scholar 

  • Cook, S.S., J.L. Roberts, G.M. Hallegraeff, and A. McMinn. 2007. Impact of canal development on intertidal microalgal productivity: comparative assessment of Patterson Lakes and Ralphs Bay, South East Australia. Journal of Coastal Conservation 11 (3): 171–181.

    Google Scholar 

  • Davis, K., I.R. Santos, A.K. Perkins, J.R. Webb, and J. Gleeson. 2020. Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal. Estuarine, Coastal and Shelf Science 235: 106567.

    CAS  Google Scholar 

  • De Weys, J., I.R. Santos, and B.D. Eyre. 2011. Linking groundwater discharge to severe estuarine acidification during a flood in a modified wetland. Environmental science technology 45 (8): 3310–3316.

    Google Scholar 

  • Dugan, J.E., D.M. Hubbard, H.M. Page, and J.P. Schimel. 2011. Marine macrophyte wrack inputs and dissolved nutrients in beach sands. Estuaries and Coasts 34 (4): 839–850.

    CAS  Google Scholar 

  • Faber, P.A., V. Evrard, R.J. Woodland, I.C. Cartwright, and P.L. Cook. 2014. Pore-water exchange driven by tidal pumping causes alkalinity export in two intertidal inlets. Limnology and Oceanography 59 (5): 1749–1763.

    CAS  Google Scholar 

  • Feller, I.C., D.F. Whigham, K.L. McKee, and C.E. Lovelock. 2003. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia 134 (3): 405–414.

    Google Scholar 

  • Garcia-Orellana, J., J. Cochran, H. Bokuniewicz, S. Yang, and A.J. Beck. 2010. Time-series sampling of 223Ra and 224Ra at the inlet to Great South Bay (New York): a strategy for characterizing the dominant terms in the Ra budget of the bay. Journal of Environmental Radioactivity 101 (7): 582–588.

    CAS  Google Scholar 

  • Garcia-Solsona, E., J. Garcia-Orellana, P. Masqué, and H. Dulaiova. 2008. Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Marine Chemistry 109 (3-4): 198–219.

    CAS  Google Scholar 

  • Gedan, K.B., M.L. Kirwan, E. Wolanski, E.B. Barbier, and B.R. Silliman. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change 106 (1): 7–29.

    Google Scholar 

  • Gleeson, J., I.R. Santos, D.T. Maher, and L. Golsby-Smith. 2013. Groundwater–surface water exchange in a mangrove tidal creek: evidence from natural geochemical tracers and implications for nutrient budgets. Marine Chemistry 156: 27–37.

    CAS  Google Scholar 

  • Harvard, U. O., 2007. A summary of error propagation. http://ipl.physics.harvard.edu/wp-uploads/2013/2003/PS2013_Error_Propagation_sp2013.pdf.

  • Harvey, J.W., J.E. Saiers, and J.T. Newlin. 2005. Solute transport and storage mechanisms in wetlands of the Everglades, south Florida. Water Resources Research 41: 5009.

    Google Scholar 

  • Jiao, J.J. 2000. Modification of regional groundwater regimes by land reclamation. Journal of Hong Kong Geologist 6: 29–36.

    Google Scholar 

  • Krest, J.M., W. Moore, L. Gardner, and J. Morris. 2000. Marsh nutrient export supplied by groundwater discharge: evidence from radium measurements. Global Biogeochemical Cycles 14 (1): 167–176.

    CAS  Google Scholar 

  • Kristensen, E. 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. Journal of Sea Research 59 (1-2): 30–43.

    Google Scholar 

  • Kristensen, E., and D.M. Alongi. 2006. Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnology and Oceanography 51 (4): 1557–1571.

    CAS  Google Scholar 

  • Kristensen, E., M.H. Jensen, G.T. Banta, K. Hansen, M. Holmer, and G.M. King. 1998. Transformation and transport of inorganic nitrogen in sediments of a southeast Asian mangrove forest. Aquatic Microbial Ecology 15: 165–175.

    Google Scholar 

  • Leung, J.Y., Q. Cai, and N.F. Tam. 2016. Comparing subsurface flow constructed wetlands with mangrove plants and freshwater wetland plants for removing nutrients and toxic pollutants. Ecological Engineering 95: 129–137.

    Google Scholar 

  • Li, H., M.C. Boufadel, and J.W. Weaver. 2008. Tide-induced seawater–groundwater circulation in shallow beach aquifers. Journal of Hydrology 352 (1-2): 211–224.

    Google Scholar 

  • Luo, X., J.J. Jiao, W. Moore, and C.M. Lee. 2014. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production. Marine Pollution Bulletin 82 (1-2): 144–154.

    CAS  Google Scholar 

  • Macintosh, D.J., and E.C. Ashton. 2002. A review of mangrove biodiversity conservation and management. Centre for tropical ecosystems research. Denmark: University of Aarhus.

    Google Scholar 

  • Macklin, P.A., D.T. Maher, and I.R. Santos. 2014. Estuarine canal estate waters: hotspots of CO2 outgassing driven by enhanced groundwater discharge? Marine Chemistry 167: 82–92.

    CAS  Google Scholar 

  • Macklin, P.A., I.R. Santos, D.T. Maher, and C.J. Sanders. 2017. Mapping short-lived radium isotopes in estuarine residential canals (Gold Coast, Australia). Journal of Radioanalytical and Nuclear Chemistry 313 (2): 409–418.

    CAS  Google Scholar 

  • Macnae, W. 1969. A General Account of the Fauna and Flora of Mangrove Swamps and Forests in the Indo-West-Pacific Region. In Advances in Marine Biology, ed. F.S. Russell and M. Yonge, 73–270. Academic Press.

  • Meter, K.J.V., N.B. Basu, J.J. Veenstra, and C.L. Burras. 2016. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environmental Research Letters 11 (3): 035014.

    Google Scholar 

  • Moore, W.S. 2010. A reevaluation of submarine groundwater discharge along the southeastern coast of North America. Global Biochemical Cycles 24: 4005.

    Google Scholar 

  • Moore, W.S., and R. Arnold. 1996. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. Journal of Geophysical Research: Oceans 101 (C1): 1321–1329.

    CAS  Google Scholar 

  • Moore, W.S., Blanton, J.O., Joye, S.B 2006. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. 111.

  • Morton, R. 1989. Hydrology and fish fauna of canal developments in an intensively modified Australian estuary. Estuarine, Coastal and Shelf Science 28 (1): 43–58.

    CAS  Google Scholar 

  • Morton, R., 1992. Fish assemblages in residential canal developments near the mouth of a subtropical Queensland estuary Marine and Freshwater Research 43, 1359–1371.

  • Peterson, R.N., W.C. Burnett, M. Taniguchi, J. Chen, I.R. Santos, and S. Misra. 2008. Determination of transport rates in the Yellow River–Bohai Sea mixing zone via natural geochemical tracers. Continental Shelf Research 28 (19): 2700–2707.

    Google Scholar 

  • Reef, R., I.C. Feller, and C.E. Lovelock. 2010. Nutrition of mangroves. Tree Physiology 30 (9): 1148–1160.

    CAS  Google Scholar 

  • Ridd, P.V. 1996. Flow through animal burrows in mangrove creeks. Journal of Estuarine, Coastal and Shelf Science 43 (5): 617–625.

    Google Scholar 

  • Rivera-Monroy, V.H., R.R. Twilley, R.G. Boustany, J.W. Day, F. Vera-Herrera, and M. del Carmen Ramirez. 1995. Direct denitrification in mangrove sediments in Terminos Lagoon, Mexico. Marine Ecology Progress Series 126: 97–109.

    Google Scholar 

  • Robinson, C., B. Gibbes, and L. Li. 2006. Driving mechanisms for groundwater flow and salt transport in a subterranean estuary. Geophysical Research Letters 33: 3402.

    Google Scholar 

  • Robinson, C.E., P. Xin, I.R. Santos, M.A. Charette, L. Li, and D.A. Barry. 2018. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: controls on submarine groundwater discharge and chemical inputs to the ocean. Advances in Water Resources 115: 315–331.

    CAS  Google Scholar 

  • Rufí-Salís, M., J. Garcia-Orellana, G. Cantero, J. Castillo, A. Hierro, J. Rieradevall, and J. Bach. 2019. Influence of land use changes on submarine groundwater discharge. Environmental Research Communications 1 (3): 031005.

    Google Scholar 

  • Sadat-Noori, M., I.R. Santos, C.J. Sanders, L.M. Sanders, and D.T. Maher. 2015. Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. Journal of Hydrology 528: 703–719.

    CAS  Google Scholar 

  • Sadat-Noori, M., I.R. Santos, D.R. Tait, M.J. Reading, and C.J. Sanders. 2017. High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes. Journal of Hydrology 553: 188–198.

    CAS  Google Scholar 

  • Sanders, C.J., I.R. Santos, R. Barcellos, and E.V. Silva Filho. 2012. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: consequence of sea level rise? Continental Shelf Research 43: 86–94.

    Google Scholar 

  • Sanders, C.J., B.D. Eyre, I.R. Santos, W. Machado, W. Luiz-Silva, J.M. Smoak, J.L. Breithaupt, M.E. Ketterer, L. Sanders, H. Marotta, and E. Silva-Filho. 2014. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophysical Research Letters 41 (7): 2475–2480.

    CAS  Google Scholar 

  • Sanders, C.J., Maher, D.T., Tait, D.R., Williams, D., Holloway, C., Sippo, J.Z., Santos, I.R., 2016. Are global mangrove carbon stocks driven by rainfall? Journal of Geophysical Research. Biogeosciences 121, 2600–2609.

  • Santos, I.R., N. Dimova, R.N. Peterson, B. Mwashote, J. Chanton, and W.C. Burnett. 2009. Extended time series measurements of submarine groundwater discharge tracers (222Rn and CH4) at a coastal site in Florida. Marine Chemistry 113 (1-2): 137–147.

    CAS  Google Scholar 

  • Santos, I.R., R.N. Peterson, B.D. Eyre, and W.C. Burnett. 2010. Significant lateral inputs of fresh groundwater into a stratified tropical estuary: evidence from radon and radium isotopes. Marine Chemistry 121 (1-4): 37–48.

    CAS  Google Scholar 

  • Santos, I.R., J. de Weys, D.R. Tait, and B.D. Eyre. 2013. The contribution of groundwater discharge to nutrient exports from a coastal catchment: post-flood seepage increases estuarine N/P ratios. Estuaries and Coasts 36 (1): 56–73.

    CAS  Google Scholar 

  • Santos, I.R., K.R. Bryan, C.A. Pilditch, and D.R. Tait. 2014. Influence of porewater exchange on nutrient dynamics in two New Zealand estuarine intertidal flats. Marine Chemistry 167: 57–70.

    CAS  Google Scholar 

  • Santos, I.R., D.T. Maher, R. Larkin, J.R. Webb, and C.J. Sanders. 2019. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnology and Oceanography 9999: 1–18.

    Google Scholar 

  • Schmidt, A., Gibson, J., Santos, I.R., Schubert, M., Tattrie, K., Weiss, H., 2010. The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance. Journal of Hydrology Earth System Sciences 14, 79–89.

  • Schwendenman, L., R. Riecke, and R.J. Lara. 2006. Solute dynamics in a North Brazilian mangrove: the influence of sediment permeability and freshwater input. Wetlands Ecology and Management 14 (5): 463–475.

    Google Scholar 

  • Singh, G., A. Ramanathan, and M.B.K. Prasad. 2005. Nutrient cycling in mangrove ecosystem: a brief overview. International Journal of Ecology and Environmental Sciences 30: 231–244.

    Google Scholar 

  • Smith, V.H. 2006. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnology and Oceanography 51 (1part2): 377–384.

    CAS  Google Scholar 

  • Smith, C.G., and P.W. Swarzenski. 2012. An investigation of submarine groundwater—borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms. Limnology and Oceanography 57 (2): 471–485.

    CAS  Google Scholar 

  • Smith, C.G., R.M. Price, P.W. Swarzenski, and J.C. Stalker. 2016. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark River Slough, Florida Coastal Everglades, USA. Estuaries and Coasts 39 (6): 1600–1616.

    Google Scholar 

  • Stewart, B.T., I.R. Santos, R.D. Tait, P.A. Macklin, and D.T. Maher. 2015. Submarine groundwater discharge and associated fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated via radium isotopes. Marine Chemistry 174: 1–12.

    CAS  Google Scholar 

  • Stieglitz, T.C., J.F. Clark, and G.J. Hancock. 2013. The mangrove pump: the tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets. Geochimica et Cosmochimica Acta 102: 12–22.

    CAS  Google Scholar 

  • Stocker, L., N. Harvey, and S.J. Metcalf. 2016. Management of coastal canal estates in Australia: challenges and opportunities. Ocean & Coastal Management 130: 148–161.

    Google Scholar 

  • Su, N., J. Du, W.S. Moore, S. Liu, and J. Zhang. 2011. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra. Science of the Total Environment 409 (19): 3909–3918.

    CAS  Google Scholar 

  • Susilo, A., P.V. Ridd, and S. Thomas. 2005. Comparison between tidally driven groundwater flow and flushing of animal burrows in tropical mangrove swamps. Wetlands Ecology and Management 13 (4): 377–388.

    Google Scholar 

  • Taillardat, P., P. Willemsen, C. Marchand, D.A. Friess, D. Widory, P. Baudron, V.V. Truong, T.-N. Nguyễn, and A.D. Ziegler. 2018. Assessing the contribution of porewater discharge in carbon export and CO2 evasion in a mangrove tidal creek (Can Gio, Vietnam). Journal of Hydrology 563: 303–318.

    CAS  Google Scholar 

  • Taillardat, P., A.D. Ziegler, D.A. Friess, D. Widory, F. David, N. Ohte, T. Nakamura, J. Evaristo, N. Thanh-Nho, T. Van Vinh, and C. Marchand. 2019. Assessing nutrient dynamics in mangrove porewater and adjacent tidal creek using nitrate dual-stable isotopes: a new approach to challenge the Outwelling Hypothesis? Marine Chemistry 214: 103662.

    CAS  Google Scholar 

  • Tait, D.R., D.T. Maher, P.A. Macklin, and I.R. Santos. 2016. Mangrove pore water exchange across a latitudinal gradient. Geophysical Research Letters 43 (7): 3334–3341.

    Google Scholar 

  • Tait, D.R., D.T. Maher, C.J. Sanders, and I.R. Santos. 2017. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves. Geochimica et Cosmochimica Acta 200: 295–309.

    CAS  Google Scholar 

  • Taniguchi, M., H. Dulai, K.M. Burnett, I.R. Santos, R. Sugimoto, T. Stieglitz, G. Kim, N. Moosdorf, and W.C. Burnett, W.C. 2019. Submarine Groundwater Discharge: Updates on Its Measurement Techniques, Geophysical Drivers, Magnitudes, and Effects. Frontiers in Environmental Science 7(141): https://doi.org/10.3389/fenvs.2019.00141.

  • Taylor, G.D., T.D. Fletcher, T.H. Wong, P.F. Breen, and H.P. Duncan. 2005. Nitrogen composition in urban runoff—implications for stormwater management. Water Research 39 (10): 1982–1989.

    CAS  Google Scholar 

  • Trent, W.L., Pullen, E.J., Moore, D., 1972. Waterfront housing developments: their effect on the ecology of a Texas estuarine area.

    Google Scholar 

  • Wadnerkar, P.D., I.R. Santos, A. Looman, C.J. Sanders, S. White, J.P. Tucker, and C. Holloway. 2019. Significant nitrate attenuation in a mangrove-fringed estuary during a flood-chase experiment. Environmental Pollution 253: 1000–1008.

    CAS  Google Scholar 

  • Wang, X., and J. Du. 2016. Submarine groundwater discharge into typical tropical lagoons: a case study in eastern Hainan Island, China.Geochemical, Geophysics, Geosystems 17: 4366–4382.

  • Wang, M., J. Zhang, Z. Tu, X. Gao, and W. Wang. 2010. Maintenance of estuarine water quality by mangroves occurs during flood periods: a case study of a subtropical mangrove wetland. Marine Pollution Bulletin 60 (11): 2154–2160.

    CAS  Google Scholar 

  • Wang, F., N. Chen, J. Yan, J. Lin, W. Guo, P. Cheng, Q. Liu, B. Huang, and Y. Tian. 2019. Major processes shaping mangroves as inorganic nitrogen sources or sinks: insights from a multidisciplinary study. Journal of Geophysical Research: Biogeosciences 124 (5): 1194–1208.

    CAS  Google Scholar 

  • Webb, J.R., I.R. Santos, B. Robson, B. Macdonald, L. Jeffrey, and D.T. Maher. 2017. Constraining the annual groundwater contribution to the water balance of an agricultural floodplain using radon: The importance of floods. Water Resources Research 53 (1): 544–562.

    Google Scholar 

  • Webb, J.R., I.R. Santos, D.T. Maher, D.R. Tait, T. Cyronak, M. Sadat-Noori, P. Macklin, and L.C. Jeffrey. 2019. Groundwater as a source of dissolved organic matter to coastal waters: insights from radon and CDOM observations in 12 shallow coastal systems. Limnology and Oceanography 64 (1): 182–196.

    CAS  Google Scholar 

  • White, S.A., I.R. Santos, and S. Hessey. 2018. Nitrate loads in sub-tropical headwater streams driven by intensive horticulture. Environmental Pollution 243 (Pt B): 1036–1046.

    CAS  Google Scholar 

  • Xia, Y.Q., and H.L. Li. 2012. A combined field and modeling study of groundwater flow in a tidal marsh. Hydrology and Earth System Sciences 16 (3): 741–759.

    Google Scholar 

  • Xiao, K., J. Wu, H. Li, Y. Hong, A.M. Wilson, J.J. Jiao, and M. Shananan. 2018. Nitrogen fate in a subtropical mangrove swamp: potential association with seawater-groundwater exchange. Science of the Total Environment 635: 586–597.

    CAS  Google Scholar 

  • Xiao, K., H. Li, M. Shananan, X. Zhang, X. Wang, Y. Zhang, X. Zhang, and H. Liu. 2019a. Coastal water quality assessment and groundwater transport in a subtropical mangrove swamp in Daya Bay, China. Science of the Total Environment 646: 1419–1432.

    CAS  Google Scholar 

  • Xiao, K., A.M. Wilson, H. Li, and C. Ryan. 2019b. Crab burrows as preferential flow conduits for groundwater flow and transport in salt marshes: a modeling study. Advances in Water Resources 132: 103408.

    Google Scholar 

  • Xin, P., G. Jin, L. Li, and D.A. Barry. 2009. Effects of crab burrows on pore water flows in salt marshes. Advances in Water Resources 32 (3): 439–449.

    Google Scholar 

  • Zedler, J.B., and S. Kercher. 2005. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30 (1): 39–74.

    Google Scholar 

  • Zhang, Y., L. Li, D.V. Erler, I. Santos, and D. Lockington. 2017. Effects of beach slope breaks on nearshore groundwater dynamics. Hydrological Processes 31 (14): 2530–2540.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sara Lock who performed the nutrient analysis.

Funding

Funding was provided by the Australian Research Council (FT170100327; LE170100007). Bayartungalag Batsaikhan’s contribution was supported by an Australian Endeavour Fellowship covering her work in Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praktan D. Wadnerkar.

Additional information

Communicated by Nancy L. Jackson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadnerkar, P.D., Batsaikhan, B., Conrad, S.R. et al. Contrasting Radium-Derived Groundwater Exchange and Nutrient Lateral Fluxes in a Natural Mangrove Versus an Artificial Canal. Estuaries and Coasts 44, 123–136 (2021). https://doi.org/10.1007/s12237-020-00778-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00778-1

Keywords

Navigation