A Metamodel-Based Analysis of the Sensitivity and Uncertainty of the Response of Chesapeake Bay Salinity and Circulation to Projected Climate Change

Abstract

Numerical models are often used to simulate estuarine physics and water quality under scenarios of future climate conditions. However, representing the wide range of uncertainty about future climate often requires an infeasible number of computationally expensive model simulations. Here, we develop and test a computationally inexpensive statistical model, or metamodel, as a surrogate for numerical model simulations. We show that a metamodel fit using only 12 numerical model simulations of Chesapeake Bay can accurately predict the early summer mean salinity, stratification, and circulation simulated by the numerical model given the input sea level, winter–spring streamflow, and tidal amplitude along the shelf. We then use this metamodel to simulate summer salinity and circulation under sampled probability distributions of projected future mean sea level, streamflow, and tidal amplitudes. The simulations from the metamodel show that future salinity, stratification, and circulation are all likely to be higher than present-day averages. We also use the metamodel to quantify how uncertainty about the model inputs transfers to uncertainty in the output and find that the model projections of salinity and stratification are highly sensitive to uncertainty about future tidal amplitudes along the shelf. This study shows that metamodels are a promising approach for robustly estimating the impacts of future climate change on estuaries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bakker, A.M.R., T.E. Wong, K.L. Ruckert, and K. Keller. 2017. Sea-level projections representing the deeply uncertain contribution of the West Antarctic ice sheet. Scientific Reports 7(1): 1517.

    Article  CAS  Google Scholar 

  2. Brekke, L., B.L. Thrasher, E.P. Maurer, and T. Pruitt. 2013. Downscaled CMIP3 and CMIP5 climate projections: release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs. Technical report.

  3. Brekke, L., A. Wood, and T. Pruitt. 2014. Downscaled CMIP3 and CMIP5 climate and hydrology projections: release of hydrology projections, comparison with preceding information, and Summary of User Needs. Technical report.

  4. Castruccio, S., D.J. McInerney, M.L. Stein, F. Liu Crouch, R.L. Jacob, and E.J. Moyer. 2014. Statistical emulation of climate model projections based on precomputed GCM runs. Journal of Climate 27(5): 1829–1844.

    Article  Google Scholar 

  5. Chant, R.J., C.K. Sommerfield, and S.A. Talke. 2018. Impact of channel deepening on tidal and gravitational circulation in a highly engineered estuarine basin. Estuaries and Coasts 41(6): 1587–1600.

    CAS  Article  Google Scholar 

  6. Chassignet, E.P., H.E. Hurlburt, O.M. Smedstad, G.R. Halliwell, P.J. Hogan, A.J. Wallcraft, R. Baraille, and R. Bleck. 2007. The HYCOM HYbrid Coordinate Ocean Model data assimilative system. Journal of Marine Systems 65: 60–83.

    Article  Google Scholar 

  7. Chassignet, E.P., L.T. Smith, G.R. Halliwell, and R. Bleck. 2003. North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity. Journal of Physical Oceanography 33(12): 2504–2526.

    Article  Google Scholar 

  8. Chen, C., R.R.C. Beardsley, and G. Cowles. 2006. An unstructured grid, Finite-Volume Coastal Ocean Model (FVCOM) System. Oceanography 19(1): 78–89.

    Article  Google Scholar 

  9. Chen, C., H. Liu, and R.C. Beardsley. 2003. An unstructured grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology 20(1): 159–186.

    Article  Google Scholar 

  10. Chen, L., S.B. Roy, and P.H. Hutton. 2018. Emulation of a process-based estuarine hydrodynamic model. Hydrological Sciences Journal 63(5): 783–802.

    Article  Google Scholar 

  11. Chua, V.P., and M. Xu. 2014. Impacts of sea-level rise on estuarine circulation: an idealized estuary and San Francisco Bay. Journal of Marine Systems 139: 58–67.

    Article  Google Scholar 

  12. Conti, S., and A. O’Hagan. 2010. Bayesian emulation of complex multi-output and dynamic computer models. Journal of Statistical Planning and Inference 140(3): 640–651.

    Article  Google Scholar 

  13. Damblin, G., M. Couplet, and B. Iooss. 2013. Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties. Journal of Simulation 7(4): 276–289.

    Article  Google Scholar 

  14. DeConto, R.M., and D. Pollard. 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531(7596): 591–597.

    CAS  Article  Google Scholar 

  15. Devlin, A.T., J. Pan, and H. Lin. 2018. Extended spectral analysis of tidal variability in the North Atlantic Ocean. Journal of Geophysical Research:, Oceans 124(1): 506–526.

    Google Scholar 

  16. Ding, H., and A.J. Elmore. 2015. Spatio-temporal patterns in water surface temperature from Landsat time series data in the Chesapeake Bay, U.S.A. Remote Sensing of Environment 168: 335–348.

    Article  Google Scholar 

  17. Du, J., and J. Shen. 2015. Decoupling the influence of biological and physical processes on the dissolved oxygen in the Chesapeake Bay. Journal of Geophysical Research: Oceans 120(1): 78–93.

    CAS  Google Scholar 

  18. Egbert, G.D., A.F. Bennett, and M.G.G. Foreman. 1994. TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research 99: 24821–24852.

    Article  Google Scholar 

  19. Egbert, G.D., and S.Y. Erofeeva. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19(2): 183–204.

    Article  Google Scholar 

  20. Fricker, T.E., J.E. Oakley, and N.M. Urban. 2013. Multivariate gaussian process emulators with nonseparable covariance structures. Technometrics 55(1): 47–56.

    Article  Google Scholar 

  21. Geyer, W.R., and P. MacCready. 2014. The estuarine circulation. Annual Review of Fluid Mechanics 46 (1): 175–197.

    Article  Google Scholar 

  22. Gibson, J.R., and R.G. Najjar. 2000. The response of Chesapeake Bay salinity to climate-induced changes in streamflow. Limnology and Oceanography 45(8): 1764–1772.

    CAS  Article  Google Scholar 

  23. Haigh, I.D., M.D. Pickering, J.A.M. Green, B.K. Arbic, A. Arns, S. Dangendorf, D.F. Hill, K. Horsburgh, T. Howard, D. Idier, D.A. Jay, L. Jänicke, S.B. Lee, M. Müller, M. Schindelegger, S.A. Talke, S. -B. Wilmes, and P.L. Woodworth. 2020. The tides they are A-Changin’: a comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms, and future implications. Reviews of Geophysics 58(1): 06–36.

    Article  Google Scholar 

  24. Hansen, D.V., and M. Rattray. 1965. Gravitational circulation in straits and estuaries. Journal of Marine Research 23: 104–122.

    Google Scholar 

  25. Hemmings, J.C.P., P.G. Challenor, and A. Yool. 2015. Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0) for parametric analysis and calibration: an application of the Marine Model Optimization Testbed mar (MOT 1.1). Geoscientific Model Development 8(3): 697–731.

    Article  Google Scholar 

  26. Hilton, T.W., R.G. Najjar, L. Zhong, and M. Li. 2008. Is there a signal of sea-level rise in Chesapeake Bay salinity? Journal of Geophysical Research 113.

  27. Holden, P.B., N.R. Edwards, K.I.C. Oliver, T.M. Lenton, and R.D. Wilkinson. 2010. A probabilistic calibration of climate sensitivity and terrestrial carbon change in GENIE-1. Climate Dynamics 35(5): 785–806.

    Article  Google Scholar 

  28. Hong, B., and J. Shen. 2012. Responses of estuarine salinity and transport processes to potential future sea-level rise in the Chesapeake Bay. Estuarine. Coastal and Shelf Science 104-105: 33–45.

    CAS  Article  Google Scholar 

  29. Huang, W., S. Hagen, P. Bacopoulos, and D. Wang. 2015. Hydrodynamic modeling and analysis of sea-level rise impacts on salinity for oyster growth in Apalachicola bay, Florida. Estuarine, Coastal and Shelf Science 156: 7–18.

    Article  Google Scholar 

  30. Iooss, B., and P. Lemaître. 2015. A review on global sensitivity analysis methods. In Dellino, G. and Meloni, C., editors, Uncertainty management in simulation-optimization of complex systems: algorithms and applications, pages 101–122. Springer US, Boston, MA.

  31. Irby, I., M.A. Friedrichs, F. Da, and K. Hinson. 2018. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay. Biogeosciences 15: 2649–2668.

    CAS  Article  Google Scholar 

  32. Irby, I.D., M.A. Friedrichs, C.T. Friedrichs, A.J. Bever, R.R. Hood, L.W. Lanerolle, M. Li, L. Linker, M.E. Scully, K. Sellner, J. Shen, J. Testa, H. Wang, P. Wang, and M. Xia. 2016. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison. Biogeosciences 13(7): 2011–2028.

    CAS  Article  Google Scholar 

  33. Jakeman, A., R. Letcher, and J. Norton. 2006. Ten iterative steps in development and evaluation of environmental models. Environmental Modelling & Software 21(5): 602–614.

    Article  Google Scholar 

  34. Jansen, M.J.W. 1999. Analysis of variance designs for model output. Computer Physics Communications 117 (1): 35–43.

    CAS  Article  Google Scholar 

  35. Johnson, T.E., J.B. Butcher, A. Parker, and C.P. Weaver. 2012. Investigating the sensitivity of U. S. streamflow and water quality to climate change: U. S. EPA Global Change Research Program’s 20 Watersheds Project. Journal of Water Resources Planning and Management 138(5): 453–464.

    Article  Google Scholar 

  36. Kimmel, D.G., M. Tarnowski, and R.I.E. Newell. 2014. The relationship between interannual climate variability and juvenile eastern oyster abundance at a regional scale in Chesapeake Bay. North American Journal of Fisheries Management 34(1): 1–15.

    Article  Google Scholar 

  37. Kopp, R.E., R.M. DeConto, D.A. Bader, C.C. Hay, R.M. Horton, S. Kulp, M. Oppenheimer, D. Pollard, and B.H. Strauss. 2017. Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea- level projections . Earth’s Future 5(12): 1217–1233.

    Article  Google Scholar 

  38. Kopp, R.E., R.M. Horton, C.M. Little, J.X. Mitrovica, M. Oppenheimer, D.J. Rasmussen, B.H. Strauss, and C. Tebaldi. 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2(8): 383–406.

    Article  Google Scholar 

  39. Le Gratiet, L., C. Cannamela, and B. Iooss. 2014. A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes. SIAM/ASA Journal on Uncertainty Quantification 2(1): 336–363.

    Article  Google Scholar 

  40. Lee, S.B., M. Li, and F. Zhang. 2017. Impact of sea level rise on tidal range in Chesapeake and Delaware Bays. Journal of Geophysical Research: Oceans 122(5): 3917–3938.

    Google Scholar 

  41. Lee, Y.J., W.R. Boynton, M. Li, and Y. Li. 2013. Role of late winter –spring wind influencing summer hypoxia in Chesapeake Bay. Estuaries and Coasts 36(4): 683–696.

    CAS  Article  Google Scholar 

  42. Li, M., Y.J. Lee, J.M. Testa, Y. Li, W. Ni, W.M. Kemp, and D.M. Di Toro. 2016. What drives interannual variability of hypoxia in Chesapeake bay: climate forcing versus nutrient loading? Geophysical Research Letters 43(5): 2127–2134.

    CAS  Article  Google Scholar 

  43. Li, M., L. Zhong, and W. C. Boicourt. 2005. Simulations of Chesapeake Bay estuary: sensitivity to turbulence mixing parameterizations and comparison with observations. Journal of Geophysical Research 110.

  44. Li, Y., and M. Li. 2011. Effects of winds on stratification and circulation in a partially mixed estuary. Journal of Geophysical Research 116.

  45. Loeppky, J.L., J. Sacks, and W.J. Welch. 2009. Choosing the sample size of a computer experiment: a practical guide. Technometrics 51(4): 366–376.

    Article  Google Scholar 

  46. MacCready, P. 1999. Estuarine adjustment to changes in river flow and tidal mixing. Journal of Physical Oceanography 29(4): 708–726.

    Article  Google Scholar 

  47. MacCready, P., and W.R. Geyer. 2010. Advances in estuarine physics. Annual Review of Marine Science 2(1): 35–58.

    Article  Google Scholar 

  48. Marrel, A., B. Iooss, F. Van Dorpe, and E. Volkova. 2008. An efficient methodology for modeling complex computer codes with Gaussian processes. Computational Statistics & Data Analysis 52(10): 4731–4744.

    Article  Google Scholar 

  49. Mattern, J.P., K. Fennel, and M. Dowd. 2013. Sensitivity and uncertainty analysis of model hypoxia estimates for the Texas-Louisiana shelf. Journal of Geophysical Research: Oceans 118(3): 1316–1317.

    CAS  Google Scholar 

  50. Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P.C. Shafran, W. Ebisuzaki, D. Jović, J. Woollen, E. Rogers, E.H. Berbery, M.B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, Y. Lin, G. Manikin, D. Parrish, and W. Shi. 2006. North American regional reanalysis. Bulletin of the American Meteorological Society 87(3): 343–360.

    Article  Google Scholar 

  51. Monismith, S.G., W. Kimmerer, J.R. Burau, and M.T. Stacey. 2002. Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay. Journal of Physical Oceanography 32(11): 3003–3019.

    Article  Google Scholar 

  52. Muhling, B.A., C. F. Gaitán, C.A. Stock, V.S. Saba, D. Tommasi, and K.W. Dixon. 2018. Potential salinity and temperature futures for the Chesapeake Bay using a statistical downscaling spatial disaggregation framework. Estuaries and Coasts 41: 349–372.

    Article  Google Scholar 

  53. Mulamba, T., P. Bacopoulos, E.J. Kubatko, and G.F. Pinto. 2019. Sea-level rise impacts on longitudinal salinity for a low-gradient estuarine system. Climatic Change 152(3-4): 533–550.

    CAS  Article  Google Scholar 

  54. Müller, M. 2012. The influence of changing stratification conditions on barotropic tidal transport and its implications for seasonal and secular changes of tides. Continental Shelf Research 47: 107–118.

    Article  Google Scholar 

  55. Müller, M., B.K. Arbic, and J.X. Mitrovica. 2011. Secular trends in ocean tides: observations and model results. Journal of Geophysical Research 116.

  56. Murphy, R.R., W.M. Kemp, and W.P. Ball. 2011. Long-term trends in chesapeake bay seasonal hypoxia, stratification, and nutrient loading. Estuaries and Coasts 34: 1293–1309.

    CAS  Article  Google Scholar 

  57. Najjar, R., L. Patterson, and S. Graham. 2009. Climate simulations of major estuarine watersheds in the mid-Atlantic region of the US. Climatic Change 95(1-2): 139–168.

    CAS  Article  Google Scholar 

  58. Najjar, R.G., C.R. Pyke, M.B. Adams, D. Breitburg, C. Hershner, M. Kemp, R. Howarth, M.R. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Wood. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86(1): 1–20.

    CAS  Article  Google Scholar 

  59. Nash, J.E., and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models part I —a discussion of principles. Journal of Hydrology 10: 282–290.

    Article  Google Scholar 

  60. Officer, C.B., R.B. Biggs, J.L. Taft, L.E. Cronin, M.A. Tyler, and W.R Boynton. 1984. Chesapeake Bay anoxia: origin, development, and significance. Science 223(4631): 22–27.

    CAS  Article  Google Scholar 

  61. Parker, K., P. Ruggiero, K.A. Serafin, and D.F. Hill. 2019. Emulation as an approach for rapid estuarine modeling. Coastal Engineering 150: 79–93.

    Article  Google Scholar 

  62. Pickering, M.D., K.J. Horsburgh, J.R. Blundell, J. -M. J. M. Hirschi, R.J. Nicholls, M. Verlaan, and N.C. Wells. 2017. The impact of future sea-level rise on the global tides. Continental Shelf Research 142: 50–68.

    Article  Google Scholar 

  63. Pleming, J., and R. Manteufel. 2005. Replicated Latin Hypercube Sampling. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference.

  64. Preston, B.L. 2004. Observed Winter Warming of the Chesapeake Bay Estuary 1949–2002: implications for Ecosystem Management. Environmental Management 34(1): 1–15.

    Article  Google Scholar 

  65. Ralston, D.K., and W.R. Geyer. 2019. Response to channel deepening of the salinity intrusion, estuarine circulation, and stratification in an urbanized estuary. Journal of Geophysical Research: Oceans, 124.

  66. Ralston, D.K., W.R. Geyer, and J.A. Lerczak. 2008. Subtidal salinity and velocity in the Hudson River estuary: observations and modeling. Journal of Physical Oceanography 38(4): 753–770.

    Article  Google Scholar 

  67. Ralston, D.K., S. Talke, W.R. Geyer, H. Al’Zubadaei, and C.K. Sommerfield. 2018. Bigger tides, less flooding: effects of dredging on barotropic dynamics in a highly modified estuary. Journal of Geophysical Research: Oceans 124.

  68. Rasmussen, C.E., and C.K.I. Williams. 2006. Gaussian Processes for Machine Learning. Cambridge: The MIT Press.

    Google Scholar 

  69. Ray, R.D. 2009. Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean. Geophysical Research Letters 36.

  70. Razavi, S., B.A. Tolson, and D.H. Burn. 2012. Review of surrogate modeling in water resources. Water Resources Research 48 7.

  71. Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj. 2011. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Climatic Change 109: 33–57.

    CAS  Article  Google Scholar 

  72. Rice, K.C., B. Hong, and J. Shen. 2012. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake bay, East Coast, USA. Journal of Environmental Management 111: 61–69.

    CAS  Article  Google Scholar 

  73. Rice, K.C., and J.D. Jastram. 2015. Rising air and stream-water temperatures in Chesapeake Bay region, USA. Climatic Change 128(1-2): 127–138.

    CAS  Article  Google Scholar 

  74. Ross, A.C., R.G. Najjar, M. Li, S.B. Lee, F. Zhang, and W. Liu. 2017. Fingerprints of sea- level rise on changing tides in the Chesapeake and Delaware Bays. Journal of Geophysical Research:, Oceans 122 (10): 8102–8125.

    Google Scholar 

  75. Roustant, O., D. Ginsbourger, and Y. Deville. 2012. DiceKriging DiceOptim: two R Packages for the analysis of computer experiments by kriging-based metamodeling and optimization. Journal of Statistical Software 51(1): 1–55.

    Article  Google Scholar 

  76. Sacks, J., W.J. Welch, J.S.B. Mitchell, and P.W. Henry. 1989. Design and experiments of computer experiments. Statistical Science 4(4): 409–423.

    Article  Google Scholar 

  77. Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola. 2010. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications 181(2): 259–270.

    CAS  Article  Google Scholar 

  78. Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, and D. Gatelli. 2008. Saisana. M., and Tarantola, S: Global sensitivity analysis. The Primer John Wiley.

    Google Scholar 

  79. Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto. 2004. Sensitivity analysis in practice: a guide to assessing scientific models wiley. Hoboken NJ: John Wiley.

    Google Scholar 

  80. Schindelegger, M., J.A. Green, S.B. Wilmes, and I.D. Haigh. 2018. Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research:, Oceans 123(7): 4593–4609.

    Google Scholar 

  81. Schleussner, C.F., K. Frieler, M. Meinshausen, J. Yin, and A. Levermann. 2011. Emulating Atlantic overturning strength for low emission scenarios: consequences for sea-level rise along the North American east coast. Earth System Dynamics 2(2): 191–200.

    Article  Google Scholar 

  82. Scully, M.E. 2010a. The importance of climate variability to wind-driven modulation of hypoxia in Chesapeake Bay. Journal of Physical Oceanography 40(6): 1435–1440.

  83. Scully, M.E. 2010b. Wind modulation of dissolved oxygen in Chesapeake Bay. Estuaries and Coasts 33 (5): 1164–1175.

  84. Scully, M.E. 2016. The contribution of physical processes to inter-annual variations of hypoxia in Chesapeake Bay: a 30-yr modeling study. Limnology and Oceanography 61(6): 2243–2260.

    CAS  Article  Google Scholar 

  85. Seong, C., V. Sridhar, and M.M. Billah. 2018. Implications of potential evapotranspiration methods for streamflow estimations under changing climatic conditions. International Journal of Climatology 38(2): 896–914.

    Article  Google Scholar 

  86. Sin, G., K.V. Gernaey, and A.E. Lantz. 2009. Good modeling practice for PAT applications: propagation of input uncertainty and sensitivity analysis. Biotechnology Progress 25(4): 1043–1053.

    CAS  Article  Google Scholar 

  87. Storlie, C.B., L.P. Swiler, J.C. Helton, and C.J. Sallaberry. 2009. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliability Engineering & System Safety 94(11): 1735–1763.

    Article  Google Scholar 

  88. Talke, S.A., and D.A. Jay. 2020. Changing tides: the role of natural and anthropogenic factors. Annual Review of Marine Science pp.121- 151.

  89. U.S. Environmental Protection Agency. 2010. Appendix F. Determination of the hydrologic period for model application. Technical report.

  90. van der Merwe, R., T.K. Leen, Z. Lu, S. Frolov, and A.M. Baptista. 2007. Fast neural network surrogates for very high dimensional physics-based models in computational oceanography. Neural Networks 20(4): 462–478.

    Article  Google Scholar 

  91. Woodworth, P.L. 2010. A survey of recent changes in the main components of the ocean tide. Continental Shelf Research 30(15): 1680–1691.

    Article  Google Scholar 

  92. Xie, X., and M. Li. 2018. Effects of wind straining on estuarine stratification: a combined observational and modeling study. Journal of Geophysical Research: Oceans 123(4): 2363–2380.

    Google Scholar 

  93. Xu, J., W. Long, J.D. Wiggert, L.W.J. Lanerolle, C.W. Brown, R. Murtugudde, and R.R. Hood. 2012. Climate forcing and salinity variability, in Chesapeake Bay, USA. Estuaries and Coasts 35(1): 237–261.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank John Lanzante, Charles Stock, and two anonymous reviewers for providing helpful reviews of this manuscript. Conflicts of interest: None.

Funding

Funding for this research was provided by the National Science Foundation (CBET-1360286), PA Sea Grant (NA10OAR4170063), and the National Oceanic and Atmospheric Administration, U.S. Department of Commerce (NA18OAR4320123). The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration or the U.S. Department of Commerce.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Ross.

Additional information

Communicated by Neil Kamal Ganju

Appendix A: Details of Gaussian Process Metamodel

Appendix A: Details of Gaussian Process Metamodel

We initially treat the model output as the sum of one or more trend terms and a zero-mean Gaussian process:

$$ \mathbf{Y}(\mathbf{x}) = f(\mathbf{x})^{\intercal} \upbeta + GP\left( 0, c(\mathbf{x}_{i}, \mathbf{x}_{j}) \right) $$
(7)

where, for an x consisting of n points in d-dimensional space, f(x) is a n × p design matrix for the trend term(s) and β is a p × 1 vector of trend parameters. For a simple intercept only (constant mean, or flat trend), p = 1 and f(x) would be a vector of n ones and β the intercept. For a linear trend, these terms are analogous to multiple linear regression, with p = 1 + d, f(x) a matrix with rows consisting of a 1 followed by the d coordinates of one point, and β representing the intercept and a slope for each dimension.

The covariance function gives the covariance between the GP at two points xi and xj. Under the assumption that the model output is a relatively smooth function of its inputs (Roustant et al. 2012), we modeled the covariance with a squared exponential function:

$$ c(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sigma^{2} {\prod}_{k=1}^{d} \exp \left( -\frac{\left( \mathbf{x}_{i,k} - \mathbf{x}_{j,k} \right)^{2}}{2 {\theta_{k}^{2}}} \right ) $$
(8)

Here, 𝜃k functions as a length scale that adjusts the distance of the decay of the covariance between model results at different values of factor k, and σ2 is a constant known as the process variance.

The separate terms in Eq. 7 can be combined into a single Gaussian process with non-zero mean, and, following Roustant et al. (2012), prediction of the numerical model output Ŷ at a new point x can be obtained from the expected value of the GP conditional on the n known values of the numerical model simulations Y at points x used to train the metamodel:

$$ E\left[\hat{Y}(\mathbf{x}_{*}) \right] = f(\mathbf{x}_{*})^{\intercal} \hat{\upbeta} + \mathbf{C}_{\mathbf{x}_{*}}^{\intercal} \mathbf{C}_{\mathbf{x}}^{-1} (\mathbf{Y} - \textbf{F} \hat{\upbeta}) $$
(9)

where f(x)β̂ is the sum of the trend function(s) given estimated values of the coefficients β̂, Cx⊺ is a 1 × n vector of the covariance between the output at the new point and the n training points, Cx− 1 is the inverse of the n × n covariance matrix of the training simulations, Y is a vector of the values of the numerical simulations used for training, and Fβ̂ is a vector of the values of the trend(s) at the training points. Eq. 9 shows that when numerical simulations are near the prediction point in parameter space, and therefore have high covariance, the deviation of the prediction from the trend will be influenced by the deviation of the nearby simulations from the trend. Far away from any numerical simulations used to fit the metamodel, the metamodel prediction will tend to revert towards the value from the trend functions only. Uncertainty about the outcome of the Gaussian process is also typically included when making predictions. See Roustant et al. (2012) for the formulation of the variance of the predicted values. Intuitively, variance is low near points where the numerical model has been run and is large at points far away from known model simulations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ross, A.C., Najjar, R.G. & Li, M. A Metamodel-Based Analysis of the Sensitivity and Uncertainty of the Response of Chesapeake Bay Salinity and Circulation to Projected Climate Change. Estuaries and Coasts (2020). https://doi.org/10.1007/s12237-020-00761-w

Download citation

Keywords

  • Emulator
  • Metamodel
  • Chesapeake Bay
  • Climate change
  • Sensitivity analysis
  • Uncertainty analysis