Skip to main content

Hurricane Sandy Effects on Coastal Marsh Elevation Change

Abstract

High-magnitude storm events such as Hurricane Sandy are powerful agents of geomorphic change in coastal marshes, potentially altering their surface elevation trajectories. But how do a storm’s impacts vary across a large region spanning a variety of wetland settings and storm exposures and intensities. We determined the short-term impacts of Hurricane Sandy at 223 surface elevation table–marker horizon stations in estuarine marshes located across the northeast region of the United States by comparing post-storm surface elevation change with pre-storm elevation trends. We hypothesized that the storm’s effect on marsh elevation trends would be influenced by position relative to landfall (right or left) and distance from landfall. The structural equation model presented predicts that marshes located to the left of landfall were more likely to experience an elevation gain greater than expected, and this positive deviation from pre-storm elevation trends tended to have a greater magnitude than those experiencing negative deviations (elevation loss), potentially due to greater sediment deposition. The magnitude of negative deviations from elevation change in marshes to the right of landfall was greater than for positive deviations, with a greater effect in marshes within 200 km of landfall, potentially from the extent and magnitude of storm surge. Overall, results provide an integrated picture of how storm characteristics combined with the local wetland setting are important to a storm’s impact on surface elevation, and that the surface elevation response can vary widely among sites across a region impacted by the same storm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • American Littoral Society. 2012. Assessing the impacts of Hurricane Sandy on coastal habitats: Final report to The National Fish and Wildlife Foundation, 2012, p. 58 www.nfwf.org/.../Documents/Hurricane-Sandy-Coastal-Habitats.pdf. Accessed 23 January 2013.

  • Aretxabaleta, A., B. Butman, and N.K. Ganju. 2014. Water level response in back-barrier bays unchanged following Hurricane Sandy. Geophysical Research Letters 41: 3163–3171.

    Article  Google Scholar 

  • Aretxabaleta, A., N. K. Ganju, B. Butman, and Z. Defne. 2016. Back-barrier water level response to offshore fluctuations. American Geophysical Union, Ocean Sciences Meeting 2016

  • Bender, M.A., T.R. Knutson, R.E. Tuleya, J.J. Sirutis, G.A. Vecchi, S.T. Garner, and I.M. Held. 2010. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327: 454–458.

    CAS  Article  Google Scholar 

  • Bivand, R., and G. Piras. 2015. Comparing implementations of estimation methods for spatial econometrics. Journal of Statistical Software 63 (18): 1–36 http://www.jstatsoft.org/v63/i18/. Accessed November 2016.

    Article  Google Scholar 

  • Bivand, R., E. Pebesma, and V.G. Bubio. 2013. Applied spatial data analysis with R. 2d ed, 405. New York: Springer Press.

    Book  Google Scholar 

  • Blake, E.S., T.B. Kimberlain, R.J. Berg, J.P. Cangialosi, and J.L. Beven II. 2013. Tropical cyclone report, Hurricane Sandy (AL182012) 22–29 October 2012: National Oceanic and Atmospheric Administration, 157. Miami: National Hurricane Center.

    Google Scholar 

  • Blum, L., R. Christian, M. Brinson, and P. Willis. 2017. Surface elevation data for the Upper Phillips Creek Marsh at the Virginia Coast Reserve, 1998-. Virginia Coast Reserve Long-Term Ecological Research Project Data Publication knb-lter-vcr.148.23. doi:https://doi.org/10.6073/pasta/427e78ec51022e1ab667c6ce206b9025.

  • Booth, J. F., H. E. Rieder, and Y. Kushnir. 2016. Comparing hurricane and extratropical storm surge for the Mid-Atlantic and Northeast Coast of the United States for 1979-2013. Environmental Research Letters, v. 11, doi: https://doi.org/10.1088/1748-9326/11/9/094004

  • Bourke, P. 2015. http://paulbourke.net/geometry/pointlineplane/pointline.r. Accessed September 2015.

  • Burnham, K.P., and D.R. Anderson. 2002. Model selection and multimodel inference—A practical information theoretic approach. 2d ed, 488. New York: Springer.

    Google Scholar 

  • Cahoon, D.R. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts 29 (6): 889–898.

    Article  Google Scholar 

  • Cahoon, D.R. 2015. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38: 1077–1084.

    Article  Google Scholar 

  • Cahoon, D.R., and G.R. Guntenspergen. 2010. Climate change, sea-level rise, and coastal wetlands. National Wetlands Newsletter 32 (1): 8–12.

    Google Scholar 

  • Cahoon, D.R., D.J. Reed, and J.W. Day. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States—Kaye and Barghoorn revisited. Marine Geology 128 (1–2): 1–9.

    Article  Google Scholar 

  • Cahoon, D.R., L.C. Lynch, P. Hensel, R. Boumans, B.C. Perez, B. Segura, and J.W. Day. 2002a. High-precision measurements of wetland sediment elevation—I. Recent improvements to the sedimentation-erosion table. Journal of Sedimentary Research 72 (5): 730–733.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R.D. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002b. High-precision measurements of wetland sediment elevation—II. The rod surface elevation table. Journal of Sedimentary Research 72 (5): 734–739.

    CAS  Article  Google Scholar 

  • Cahoon, D.R., P. Hensel, J. Rybczyk, K.L. McKee, C.E. Proffitt, and B.C. Perez. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91: 1093–1105.

    Article  Google Scholar 

  • Cahoon, D. R., D. J. Reed, A. Kolker, M. M. Brinson, J. C. Stevenson, S. Riggs, R. Christian, E. Reyes, C. Voss, and D. Kunz. 2009. Coastal wetland sustainability. In Coastal sensitivity to sea-level rise—A focus on the mid-Atlantic region ed. J. G. Titus (coordinating lead author), K. E. Anderson, D. R. Cahoon, S. Gill, E. R. Thieler, and S. J. Williams (lead authors), 57–72. U.S. Environmental Protection Agency.

  • Callaway, J.C., D.R. Cahoon, and J.C. Lynch. 2013. The Surface Elevation Table–marker horizon method for measuring wetland accretion and elevation dynamics, in DeLaune, R.D., Reddy, K.R., Richardson, C.J., and Megonigal, J.P., editors, Methods in biogeochemistry of wetlands: Madison, Soil Science Society of America, SSSA Book Series 10, p. 901-918.

  • Castagno, K.A., A.M. Jiménez-Robles, J.P. Donnelly, P.L. Wiberg, M.S. Fenster, and S. Fagherazzi. 2018. Intense storms increase the stability of tidal bays. Geophysical Research Letters 45: 5491–5500. https://doi.org/10.1029/2018GL078208.

    Article  Google Scholar 

  • Core Team, R. 2016. R—A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing https://www.R-project.org/. Accessed August 2015.

    Google Scholar 

  • Davis, R.E., and R. Dolan. 1993. Nor’easters. American Scientist 81: 428–439.

    Google Scholar 

  • Day, J., R.R. Christian, D.M. Boesch, A. Yáñez-Arancibia, J. Morris, R.R. Twilley, L. Naylor, L. Schaffner, and C. Stevenson. 2008. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries and Coasts 31 (3): 477–491.

    Article  Google Scholar 

  • Day, J., G.P. Kemp, D. Reed, D. Cahoon, R. Boumans, J. Suhayda, and R. Gambrell. 2011. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise. Ecological Engineering 37: 229–240.

    Article  Google Scholar 

  • Dennison, W. C., T. Saxby, and B. M. Walsh, eds. 2012. Responding to major storm impacts—Chesapeake Bay and Delmarva Coastal Bays: Integration & Application Network, University of Maryland Center for Environmental Science, 16 p. https://mdcoastalbays.org/files/pdfs_pdf/HurricaneSandyAssessment-Final-1.pdf. Accessed 23 January 2013

  • Donatelli, C., N.K. Ganju, X. Zhang, S. Fagherazzi, and N. Leonardi. 2018. Salt marsh loss the sediment budget of shallow bays. Journal of Geophysical Research - Earth Surface. https://doi.org/10.1029/2018JF004617.

  • Dowle, M., A. Srinivasan, T. Short, and S. Lianoglou, with contributions from R. Saporta, and E. Antonyan. 2015. data.table—Extension of data.frame (v. 1.9.6): R package. https://CRAN.R-project.org/package=data.table. Accessed March 2017.

  • Emanuel, K.A. 2013. Downscaling CMIP5 climate models show increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences of the United States of America 110: 12219–12224.

    CAS  Article  Google Scholar 

  • Ezer, T., and L.P. Atkinson. 2014. Accelerated flooding along the U.S. east coast—On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. Earth’s Future 2: 362–382.

    Article  Google Scholar 

  • Fagherazzi, S. 2014. Storm-proofing with marshes. Nature Geoscience 7: 701–702.

    CAS  Article  Google Scholar 

  • Federal Emergency Management Agency. 2015. FEMA Modeling Task Force (MOTF) Hurricane Sandy impact analysis: Federal Emergency Management Agency web page. http://www.arcgis.com/home/item.html?id=307dd522499d4a44a33d7296a5da5ea0. Accessed 29 February 2015.

  • Fox, J., and S. Weisberg. 2011. An R companion to applied regression. 2d ed, 449. Thousand Oaks: Sage Publications.

    Google Scholar 

  • Gardner, L.R., W.K. Michener, B. Kjerfve, and D.A. Karinshak. 1991. The geomorphic effects of Hurricane Hugo on an undeveloped coastal landscape at North Inlet, South Carolina. Journal of Coastal Research Special Issue 8: 181–186.

    Google Scholar 

  • Gardner, L.R., W.K. Michener, T.M. Williams, E.R. Blood, B. Kjerfve, L.A. Smock, D.J. Lipscomb, and C. Gresham. 1992. Disturbance effects of Hurricane Hugo on a pristine coastal landscape—North Inlet, South Carolina, USA. Netherlands Journal of Sea Research 30: 249–263.

    Article  Google Scholar 

  • Grace, J.B. 2006. Structural equation modeling and natural systems. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Grace, J.B., D.R. Schoolmaster Jr., G.R. Guntenspergen, A.M. Little, B.R. Mitchell, K.M. Miller, and E.W. Schweiger. 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3 (8): 1–44. https://doi.org/10.1890/ES12-00048.1 .

    Article  Google Scholar 

  • Grubel, C., J. Waldman, J. Lodge, and D. Suszkowski. 2012. Rapid assessment of habitat and wildlife losses from Hurricane Sandy in the Hudson Raritan Estuary: Report by the Hudson River Foundation to The National Fish and Wildlife Foundation, December 12, 2012, 22 p. www.hudsonriver.org/download/HRF RAP Final Report - Sent 12-21-12.pdf. Accessed 23 January 2013.

  • Hall, T.M., and A.H. Sobel. 2013. On the impact angle of Hurricane Sandy’s New Jersey landfall. Geophysical Research Letters 40: 2312–2315.

    Article  Google Scholar 

  • Hauser, S., M.S. Meixler, and M. Laba. 2015. Quantification of impacts and ecosystem services loss in New Jersey coastal wetlands due to Hurricane Sandy storm surge. Wetlands 35: 1137–1148.

    Article  Google Scholar 

  • Horton, R.M., V. Gornitz, D.A. Bader, A.C. Ruane, R. Goldberg, and C. Rosenzweig. 2011. Climate hazard assessment for stakeholder adaptation planning in New York City. Journal of Applied Meteorology and Climatology 50: 2247–2266.

    Article  Google Scholar 

  • Horton, R., G. Yohe, W. Easterling, R. Kates, M. Ruth, E. Sussman, A. Whelchel, D. Wolfe, and F. Lipschultz. 2014. Northeast. In Climate change impacts in the United States—The third national climate assessment, eds. J. M. Melillo, T. C. Richmond, and G. W. Yohe, 371–395. U.S. Global Change Research Program. http://nca2014.globalchange.gov.

  • Inamdar, S., S. Singh, S. Dutta, D. Levia, M. Mitchell, D. Scott, H. Bais, and P. McHale. 2011. Fluorescence characteristics and sources of dissolved organic matter for stream water during storm events in a forested mid-Atlantic watershed. Journal of Geophysical Research – Biogeosciences 116 (G3). https://doi.org/10.1029/2011JG001735.

  • Kemp, A.C., and B.P. Horton. 2013. Contribution of relative sea-level rise to historical hurricane flooding in New York City. Journal of Quaternary Science 28 (6): 537–541.

    Article  Google Scholar 

  • Kemp, A.C., T.D. Hill, C.H. Vane, N. Cahil, P.M. Orton, S.A. Talke, A.C. Parnell, K. Sanborn, and E.K. Hartig. 2017. Relative sea-level trends in New York City during the past 1500 years. The Holocene 27 (8): 1169–1186. https://doi.org/10.1177/0959683616683263.

    Article  Google Scholar 

  • Knutson, T.R., J.L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, J.P. Kossin, A.K. Srivastava, and M. Sugi. 2010. Tropical cyclones and climate change. Nature Geoscience 3: 157–163.

    CAS  Article  Google Scholar 

  • Leonardi, N., I. Carnacina, C. Donatelli, N. Ganju, A. Plater, M. Schuerch, and S. Temmerman. 2018. Dynamic interactions between coastal storms and salt marshes—A review. Geomorphology 301: 92–107.

    Article  Google Scholar 

  • Lin, N., R.E. Kopp, B.P. Horton, and J.P. Donnelly. 2016. Hurricane Sandy’s flood frequency increasing from year 1800 to 2100. Proceedings of the National Academy of Sciences 113 (43): 12071–12075.

    CAS  Article  Google Scholar 

  • Little, C.M., R.M. Horton, R.E. Kopp, M. Oppenheimer, G.A. Vecchi, and G. Villarini. 2015. Joint projections of US East coast sea level and storm surge. Nature Climate Change 5: 1114–1120.

    Article  Google Scholar 

  • Longenecker, R., J. Bowman, B. Olsen, S. Roberts, C. Elphick, P. Castelli, and W.G. Shriver. 2018. Short-term resilience of New Jersey tidal marshes to Hurricane Sandy. Wetlands 38 (3): 565–575. https://doi.org/10.1007/s13157-018-1000-2.

    Article  Google Scholar 

  • Lynch, J.C., P. Hensel, and D.R. Cahoon. 2015. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics. In Natural Resource Report NPS/NCBN/NRR—2015/1078. Fort Collins: National Park Service.

    Google Scholar 

  • Mallin, M., and C. Corbett. 2006. How hurricane attributes determine the extent of environmental effects: Multiple hurricanes and different coastal systems. Estuaries and Coasts 29 (6): 1046–1061.

    Article  Google Scholar 

  • Marsh, A., L.K. Blum, R.R. Christian, E. Ramsey III, and A. Rangoonwala. 2016. Response and resilience of Spartina alterniflora to sudden dieback. Journal of Coastal Conservation 20 (4): 335–350.

    Article  Google Scholar 

  • Mazerolle, M. J. 2016. AICcmodavg—Model selection and multi-model inference based on (Q)AIC(c) (v. 2.0-4). R package. http://CRAN.R-project.org/package=AICcmodavg. Accessed August 2016.

  • Middleton, B. 2016. Differences in impacts of Hurricane Sandy on freshwater swamps on the Delmarva Peninsula, Mid-Atlantic Coast, USA. Ecological Engineering 87: 62–70.

    Article  Google Scholar 

  • Moher, D., A. Liberati, J. Tetzlaff, and D.G. Altman. 2009. Preferred reporting items for systematic reviews and meta-analyses—The PRISMA statement. PLoS Medicine 6 (6): e1000097. https://doi.org/10.1371/journal.pmed1000097.

    Article  Google Scholar 

  • Moller, I., M. Kudella, F. Rupprecht, T. Spencer, M. Paul, B.K. van Wesenbeeck, G. Wolters, K. Jensen, T.J. Bouma, M. Miranda-Lange, and S. Schimmels. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience 7: 727–731.

    CAS  Article  Google Scholar 

  • Narayan, S., M. Beck, P. Wilson, C. Thomas, A. Guerrero, C. Shepard, B. Reguero, G. Franco, J. Ingram, and D. Trespalacios. 2017. The value of coastal wetlands for flood damage reduction in the northeastern USA. Nature Scientific Reports. https://doi.org/10.1038/s41598-017-09269-z.

  • National Aeronautics and Space Administration. 2013. Hurricane Sandy (Atlantic Ocean), October 28, 2013. National Aeronautics and Space Administration web page www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Sandy.html. Accessed 3 March 2017.

  • National Oceanic and Atmospheric Administration. 2010. County by county hurricane strikes (1900–2009). National Oceanic and Atmospheric Administration, National Hurricane Center web page, last updated February 2010. www.nhc.noaa.gov/ms-excel/HurricaneStrikes_20100204.xls. Accessed 29 July 2015.

  • National Oceanic and Atmospheric Administration 2014. NOAA/National Hurricane Center preliminary best track tropical cyclone tracks [file: al182012_best_track.zip]. National Oceanic and Atmospheric Administration, National Hurricane Center. http://www.nhc.noaa.gov/gis/. Accessed 29 July 2015.

  • Pebesma, E. J., and R. S. Bivand. 2005. Classes and methods for spatial data in R. R News 5(2) http://cran.r-project.org/doc/Rnews/. Accessed April 2015.

  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck. 2012. Global trends in tropical cyclone risk. Nature Climate Change 2: 289–294.

    Article  Google Scholar 

  • Prandle, D., and J. Wolf. 1978. The interaction of surge and tide in the North Sea and River Thames. Geophysical Joural International 55 (1): 203–216.

    Article  Google Scholar 

  • Quirk, T. 2016. Impact of Hurricane Sandy on salt marshes of New Jersey. Estuarine. Coastal and Shelf Science 183: 235–248.

    Article  Google Scholar 

  • Rachlin, J.W., R. Stalter, D. Kincaid, and B.E. Warkentine. 2017. The effect of Superstorm Sandy on salt marsh vascular flora in the New York Bight. Journal of the Torrey Botanical Society 144 (1): 40–46.

    Article  Google Scholar 

  • Rangoonwala, A., N. Enwright, E. Ramsey, and J. Spruce. 2016. Radar and optical mapping of surge persistence and marsh dieback along the New Jersey Mid-Atlantic coast after Hurricane Sandy. International Journal of Remote Sensing 37: 1692–1713.

    Article  Google Scholar 

  • Reed, D.J. 2002. Sea-level rise and coastal marsh sustainability—Geological and ecological factors in the Mississippi delta plain. Geomorphology 48: 233–243.

    Article  Google Scholar 

  • Reed, A.J., M.E. Mann, K.A. Emanuel, N. Lin, B.P. Horton, A.C. Kemp, and J.P. Donnelly. 2015. Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era. Proceedings of the National Academy of Sciences 112 (41): 12610–12615.

    CAS  Article  Google Scholar 

  • Resio, D.T., and J.J. Westerink. 2008. Modeling the physics of storm surges. Physics Today 61: 33–38.

    Article  Google Scholar 

  • Rupprecht, F., I. Moller, M. Paul, M. Kudella, T. Spencer, B.K. van Wesenbeeck, G. Wolters, K. Jensen, T.J. Bouma, M. Miranda-Lange, and S. Schimmels. 2017. Vegetation-wave interactions in salt marshes under storm surge conditions. Ecological Engineering 100: 301–315.

    Article  Google Scholar 

  • Sallenger, A.H., K.S. Doran, and P.A. Howd. 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2: 884–888.

    Article  Google Scholar 

  • Sopkin, K. L., H. F. Stockdon, K. S. Doran, N. G. Plant, K. L. M. Morgan, K. K. Guy, and K. E. L. Smith. 2014. Hurricane Sandy—Observations and analysis of coastal change. U.S. Geological Survey Open-File Report 2014–1088, 54 p. 10.3133/ofr20141088. Accessed July 2015

  • Stevenson, J.C., L.G. Ward, and M.S. Kearney. 1988. Sediment transport and trapping in marsh system—Implications of tidal flux studies. Marine Geology 80: 37–59.

    Article  Google Scholar 

  • Sweet, W. V., R. E. Kopp, C. P. Weaver, J. Obeysekera, R. M. Horton, E. R. Thieler, and C. Zervas, 2017. Global and regional sea level rise scenarios for the United States. National Oceanic and Atmospheric Administration Technical Report NOS CO-OPS 083, 55 p. + appendices.

  • Talke, S.A., P. Orton, and D.A. Jay. 2014. Increasing storm tides in New York Harbor, 1844–2013. Geophysical Research Letters 41: 3149–3155.

    Article  Google Scholar 

  • Tebaldi, C., B.H. Strauss, and C.E. Zervas. 2012. Modelling sea level rise impacts on storm surges along US coasts. Environmental Research Letters 7 (1). https://doi.org/10.1088/1748-9326/7/1/014032.

  • Temmerman, S., P. Meire, T.J. Bouma, P.M.J. Herman, T. Ysebaert, and H.J. De Vriend. 2013. Ecosystem-based coastal defence in the face of global change. Nature 504: 79–83.

    CAS  Article  Google Scholar 

  • Valle-Levinson, A., M. Olabarrieta, and A. Valle. 2013. Semi-diurnal perturbations to the surge of Hurricane Sandy. Geophysical Research Letters 40: 2211–2217.

    Article  Google Scholar 

  • Wang, H., Q. Chen, K. Hu, G. A. Snedden, E. K. Hartig, B. R. Couvillion, C. L. Johnson, and P. M. Orton. 2017. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City. U.S. Geological Survey Open-File Report 2017–1016, 43 p. 10.3133/ofr20171016. Accessed March 2018.

  • Webb, E.L., D.A. Friess, K.W. Krauss, D.R. Cahoon, G.R. Guntenspergen, and J. Phelps. 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3: 458–465.

    Article  Google Scholar 

  • Wickham, H. 2007. Reshaping data with the reshape package. Journal of Statistical Software 21(12). http://www.jstatsoft.org/v21/i12/. Accessed March 2017.

  • Wickham, H. 2014. Tidy data. Journal of Statistical Software 59(10). http://www.jstatsoft.org/V59/i10/. Accessed March 2017.

  • Woodruff, J.D., J.L. Irish, and S.J. Camargo. 2013. Coastal flooding by tropical cyclones and sea-level rise. Nature 504: 44–52.

    CAS  Article  Google Scholar 

  • Zuur, A.F., E.N. Ieno, N.J. Walker, A.A. Saveliev, and G.M. Smith. 2009. Mixed effects models and extensions in ecology with R, 574 p. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the following people and institutions that provided data in support of this project (names presented alphabetically):

Anne Giblin, Hap Garritt, Karen Sundberg, and Samantha Bond of the Plum Island Estuary Long-Term Ecological Research site, Massachusetts (funded by National Science Foundation [NSF] Plum Island Ecosystems – Long Term Ecological Research [PIE-LTER] 1637630 and 1238212)

Paul Castelli, Edwin B. Forsythe National Wildlife Refuge, Oceanville, New Jersey

Ben Gaspar, Rhode Island National Wildlife Refuge Complex, Charlestown, Rhode Island

Christopher Snow, Maryland Department of Natural Resources

Monica Williams, Long Island National Wildlife Refuge Complex, Shirley, New York

We wish to acknowledge the following organizations for their funding and logistical support:

Shimon Anisfeld thanks the US Environmental Protection Agency and Connecticut Sea Grant for funding to install and monitor surface elevation table (SET) stations.

Alice Benzecry gratefully acknowledges the support of Fairleigh Dickinson University and Meadowlands Environmental Research Institute (MERI) for funding to install and monitor SET stations. http://meri.njmeadowlands.gov/projects/sea-level-rise-measurements/.

Linda Blum - SET and marker horizon (MH) data collection is based upon work supported by the NSF under Grant Nos. BSR-8702333-06, DEB-9211772, DEB-9411974, DEB-0080381, DEB-0621014, and DEB-1237733. The Virginia Coast Reserve of the Nature Conservancy provided access to study sites. Database citation for this data set is Blum et al. (2017).

J. Patrick Megonigal - SET data from the Smithsonian Environmental Research Center was funded by the Department of Energy Terrestrial Ecosystem Science Program (DE-FG02-97ER62458), the US Geologic Survey (G10AC00675), the National Science Foundation Long-Term Research in Environmental Biology Program (DEB-0950080, DEB-1457100, DEB-1557009), Maryland Sea Grant (SA7528082, SA7528114-WW), and the Smithsonian Institution.

Nicole Maher and Adam Starke with The Nature Conservancy in NY acknowledge the generous financial support for this work from the Zegar Family Foundation and the Pritchard Charitable Trust.

William Reay - Maintenance and monitoring of Chesapeake Bay National Estuarine Research Reserve (CBNERR) SET-MH stations is supported, in part, by NERR operational awards from the Office of Ocean and Coastal Management, NOAA.

Alice Yeates and Jennifer Olker acknowledge Center for Water and the Environment, Natural Resources Research Institute, University of Minnesota Duluth (contribution number: 639)

We wish to acknowledge the following people for assistance in field data collection and management, GIS, and in report preparation:

We thank Kristi Nixon, Natural Resources Research Institute, University of Minnesota Duluth, for GIS assistance. Glenn Guntenspergen thanks Patrick Brennand and Robert Derby for SET-MH installation and monitoring. Ellen Kracauer Hartig thanks New York City Parks partners Rebecca Boger of Brooklyn College, City University of New York (CUNY), for providing funding for installing additional stations and Alice Benzecry of Fairleigh Dickinson University and her students who assisted with monitoring. Jenny Allen and Amanda Garzio-Hadzick assisted in the field at the Chesapeake Bay National Estuarine Research Reserve in Maryland. We thank Toni Mikula and Kate O’Brien at Rachel Carson National Wildlife Refuge (NWR), and Curtis George at Bombay Hook NWR for their support. Shimon Anisfeld thanks Troy Hill for assistance in monitoring SET-MH stations. Shannon Beliew, US Geological Survey, Patuxent Wildlife Research Center, updated the map figures for publication. William Reay thanks Jim Goins and Alex Demeo for assistance in SET-MH station installation and monitoring.

J Grace and Glenn Guntenspergen were supported by the USGS Land Change Science and Ecosystems Programs. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Cahoon.

Additional information

Communicated by: Charles Simenstad

Electronic supplementary material

ESM 1

(PDF 2127 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeates, A.G., Grace, J.B., Olker, J.H. et al. Hurricane Sandy Effects on Coastal Marsh Elevation Change. Estuaries and Coasts 43, 1640–1657 (2020). https://doi.org/10.1007/s12237-020-00758-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00758-5

Keywords

  • Hurricane Sandy
  • Marsh dynamics
  • Storm impacts
  • Surface elevation table
  • marker horizon
  • SET-MH
  • Structural equation modeling