Skip to main content

Advertisement

Log in

Microbial Community Response to a Passive Salt Marsh Restoration

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

In response to current threats to salt marshes, there are increasing efforts to restore these vital coastal ecosystems and promote their resilience to global change drivers. Unfortunately, the economic cost associated with assessing the effectiveness of restoration is prohibitive and more information is needed about the trajectory and timing of restoration outcomes to improve restoration practices. Microbial communities provide essential salt marsh functions so assessing the degree to which microbial communities in restored marshes resemble reference marshes can serve as a proxy indicator for the potential return of microbial function. We studied a recently restored marsh located on Cape Cod, MA, USA, by examining shifts in the microbial community and sediment edaphic properties in three habitats of a degraded oligohaline marsh, both before and after restoration of tidal flooding and in comparison with three nearby S. alterniflora reference marshes that never had flow restrictions. We hypothesized that the microbial community would respond rapidly to the restoration and that over time these communities would be indistinguishable from reference marsh communities. We found that soil edaphic characteristics shifted along a trajectory of recovery toward the reference marshes, with increases in salinity and decreases in soil organic matter, percentage of carbon, and percentage of nitrogen. The microbial communities in all three habitats within the restored marsh were different from reference marshes, and both the prokaryotic and fungal communities within P. australis and Typha sp. habitats became more similar to reference marshes (similarities increasing from an average of 5 to 16% for prokaryotes and 3 to 10% for fungi) during the first 2 years after restoration. In that same time period, by contrast, there was no return of the native marsh vegetation. These results suggest that shifts in microbial community structure occur prior to shifts in marsh vegetation and may facilitate the successful revegetation of restored marshes. Understanding the recovery trajectory of marshes during restoration and the role that microbes play in promoting the long-term sustainability of these habitats is essential; these results suggest that microbial communities respond rapidly and in a positive direction to restoration efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Able, K.W., and S.M. Hagan. 2003. Impact of common reed, Phragmites australis, on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of Mummichog (Fundulus heteroclitus). Estuaries 26: 40–50.

    Google Scholar 

  • Anderson, M. J. 2017. Permutational multivariate analysis of variance (PERMANOVA), Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat07841.

  • Barberán, A., L. Mcguire, J.A. Wolf, F.A. Jones, S.J. Wright, B.L. Turner, A. Essene, S.P. Hubbell, B.C. Faircloth, and N. Fierer. 2015. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecology Letters 18 (12): 1397–1405.

    Google Scholar 

  • Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software. https://doi.org/10.18637/jss.v067.i01.

  • Bernhard, A.E., D. Marshal, and L. Yiannos. 2012. Increased variability of microbial communities in restored marshes nearly 30 years after tidal flow restoration. Estuaries and Coasts 35: 1049–1059.

    CAS  Google Scholar 

  • Bernhard, A.E., C. Dwyer, A. Idrizi, G. Bender, and R. Zwick. 2015. Long-term impacts of disturbance on nitrogen cycling bacteria in a New England salt marsh. Fronteirs in Microbiology. https://doi.org/10.3389/fmicb.2015.00046.

  • Bowen, J.L., H.G. Morrison, J.E. Hobbie, and M.L. Sogin. 2012. Salt marsh sediment diversity: A test of the variability of the rare biosphere among environmental replicates. The ISME Journal 6 (11): 2014–2023.

    CAS  Google Scholar 

  • Bowen, J.L., D. Weisman, M. Yasuda, A. Jayakumar, H.G. Morrison, and B.B. Ward. 2015. Marine oxygen-deficient zones harbor depauperate denitrifying communities compared to novel genetic diversity in coastal sediments. Microbial Ecology 70: 311–321.

    CAS  Google Scholar 

  • Bowen, J.L., P.J. Kearns, J.E.K. Byrnes, S. Wigginton, W.J. Allen, M. Greenwood, K. Tran, J. Yu, J.T. Cronin, and L.A. Meyerson. 2017. Lineage overwhelms environmental conditions in determining rhizosphere bacterial community strucutre in a cosmopolitan invasvive plant. Nature Communications 8: 433.

    Google Scholar 

  • Broeckling, C.D., A.K. Broz, J. Bergelson, D.K. Manter, and J.M. Vivanco. 2008. Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology 74 (3): 738–744.

    CAS  Google Scholar 

  • Buchan, A., S.Y. Newell, M. Butler, E.J. Biers, J.T. Hollibaugh, and M.A. Moran. 2003. Dynamics of bacterial and fungal communities on decaying salt marsh grass. Applied and Environmental Microbiology 69 (11): 6676–6687.

    CAS  Google Scholar 

  • Burke, D., E. Hamerylynck, and D. Hahn. 2002. Interactions among plant species and microorganisms in salt marsh sediments. Applied and Environmental Microbiology 68 (3): 1157–1164.

    CAS  Google Scholar 

  • Callahan, B.J., P.J. McMurdie, M.J. Rosen, A.W. Han, A.J.A. Johnson, and S.P. Holmes. 2016. DADA2: High resolution sample inference from Illumina amplicon data. Nature Methods 13 (7): 581–583.

    CAS  Google Scholar 

  • Callahan, B.J., P.J. McMurdie, and S.P. Holmes. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal 11 (12): 2639–2643.

    Google Scholar 

  • Cao, Y., P.G. Green, and P.A. Holden. 2008. Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Applied and Environmental Microbiology 74 (24): 7585–7595.

    CAS  Google Scholar 

  • Cape Cod Conservation District. 2012. Final technical memorandum Muddy Creek Wetland Restoration Chatham, and Harwich, Massachusetts. Providence: Fuss and O'Neill.

    Google Scholar 

  • Caporaso, J.G., J. Kuczynski, J. Strombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, et al. 2010. QIIME allows analysis of high-throughput community seuqencing data. Nature Methods 7: 335–336.

    CAS  Google Scholar 

  • Caporaso, J.G., C.L. Lauber, W.A. Walters, D. Berg-Lyons, C.A. Lozupone, P.J. Turnbaugh, et al. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108: 4516–4522.

    CAS  Google Scholar 

  • Caporaso, J.G., C.L. Lauber, W.A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer, S.M. Owens, J. Betley, L. Fraser, M. Bauer, N. Gormley, J.A. Gilbert, G. Smith, and R. Knight. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal 6 (8): 1621–1624.

    CAS  Google Scholar 

  • Chen, Y.L., T.L. Xu, S.D. Veresoglou, H.W. Hu, Z.P. Hao, Y.J. Hu, L. Liu, Y. Deng, M.C. Rillig, and B.D. Chen. 2017. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology and Biochemistry 110: 12–21.

    CAS  Google Scholar 

  • Costanza, R., S.C. Farber, and J. Maxwell. 1989. Valuation and management of wetland ecosystems. Ecological Economics 1: 335–361.

    Google Scholar 

  • Craft, C., P. Megonigal, S. Broome, J. Stevenson, R. Freese, J. Cornell, L. Zheng, and J. Sacco. 2003. The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecological Applications 13 (5): 1417–1432.

    Google Scholar 

  • Crump, B.C., C.S. Hopkinson, M.L. Sogin, and J.E. Hobbie. 2004. Microbial biogeography along an estuarine salinity gradient: Combined influences of bacterial growth and residence time. Applied and Environmental Microbiology 70 (3): 1494–1505.

    CAS  Google Scholar 

  • Csardi, G., and T. Nepusz. 2006. The igraph software package for complex network reseach. InterJournal Complex Systems 1695: 1–9.

    Google Scholar 

  • Daleo, P., J. Alberti, A. Canepuccia, M. Escapa, E. Fanjul, B.R. Silliman, M.D. Bertness, and O. Iribarne. 2008. Mycorrhizal fungi determine salt-marsh plant zonation depending on nutrient supply. Journal of Ecology 96: 431–437.

    Google Scholar 

  • de León, D.G., M. Moora, M. Öpik, L. Neuenkamp, M. Gerz, T. Jairus, M. Vasar, C.G. Bueno, J. Davison, and M. Zobel. 2016. Symbiont dynamics during ecosystem succession: Co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology 92: 1–9.

    Google Scholar 

  • Delgado-Baquerizo, M., F.T. Maestre, P.B. Reich, T.C. Jeffries, J.J. Gaitan, et al. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications. https://doi.org/10.1038/ncomms10541.

  • Dini-Andreote, F., M.J. de Brossi, J.D. van Elsas, and J.F. Salles. 2016a. Reconstructing the genetic potential of the microbially-mediated nitrogen cycle in a salt marsh ecosystem. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2016.00902.

  • Dini-Andreote, F., V.S. Pylro, P. Baldrian, J.D. Van Elsas, and J.F. Salles. 2016b. Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities. The ISME Journal 10: 1984–1997.

    CAS  Google Scholar 

  • Duarte, B., J. Freitas, and I. Caçador. 2012. Sediment microbial activities and phsic-chemistry as progress indicators of salt marsh restoration success. Ecological Indicators 19: 231–239.

    CAS  Google Scholar 

  • Erlacher, A., T. Cernava, M. Cardinale, J. Soh, C.W. Sensen, M. Grube, and G. Berg. 2015. Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2015.00053.

  • Falkowski, P.G., T. Fenchel, and E.F. Delong. 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science 320 (5879): 1034–1039.

    CAS  Google Scholar 

  • Fierer, N. 2017. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology 15: 579–590.

    CAS  Google Scholar 

  • Fierer, N., and J.T. Lennon. 2011. The generation and maintenance of diversity in microbial communities. American Journal of Botany 98 (3): 439–448.

    Google Scholar 

  • Hamilton, E.W., and D.A. Frank. 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82: 2397–2402.

    Google Scholar 

  • Hartman, W.H., C.J. Richardson, R. Vilgalys, and G.L. Bruland. 2008. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences 105: 17842–17847.

    CAS  Google Scholar 

  • Hartmann, A., M. Schmid, D. van Tuinen, and G. Berg. 2009. Plant-driven selection of microbes. Plant and Soil 321: 235–257.

    CAS  Google Scholar 

  • Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaeous inference in general parametric models. Biometrical Journal 50 (3): 346–363.

    Google Scholar 

  • Howarth, R.W., and A.E. Giblin. 1983. Sulfate reduction in the salt marshes at Sapelo Island, Georgia. Limnology and Oceanography 28: 70–82.

    CAS  Google Scholar 

  • Ivanova, E.P., S. Flavier, and R. Christen. 2004. Phylogenetic relationships among marine Alteromonas-like proteobacteria: Emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferri. International Journal of Systematic and Evolutionary Microbiology 54: 1773–1788.

    CAS  Google Scholar 

  • Liang, B., L.Y. Wang, S.M. Mbadinga, J.F. Liu, S.Z. Uang, J.D. Gu, and B.Z. My. 2015. Anaerolineaceae and Methanosaeta turned to be the dominant microorgnaisms in alkanes-dependent mathanogenic culture after long-term incubation. AMB Express. https://doi.org/10.1186/s13568-015-0117-4.

  • Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. Rnews 2: 18–22.

    Google Scholar 

  • Lindström, E.S., M.P.K. Agterveld, and G. Zwart. 2005. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Applied and Environmental Microbiology 71 (12): 8201–8206.

    Google Scholar 

  • Liu, Z., N.U. Frigaard, K. Vogl, T. Iino, M. Ohkuma, J. Overmann, and D.A. Byant. 2012. Complete genomie of Ignavibacterium album, a metabolically versatile, flaellated, facultative anaerobe from the phylum Chlorobi. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2012.00185.

  • Lozupone, C.A., and R. Knight. 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences 104: 11436–11440.

    CAS  Google Scholar 

  • Ma, Z., M. Zhang, R. Xiao, Y. Ciu, and F. Yu. 2017. Changes in soil microbial biomass and community composition in coastal wetlands affected by restoration projects in a Chinese delta. Geoderma 289: 124–134.

    CAS  Google Scholar 

  • McDonald, D., M.N. Price, J. Goodrich, E.P. Nawrocki, T.Z. Desantis, A. Probst, et al. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal 6 (3): 610–618.

    CAS  Google Scholar 

  • McHugh, J.M., and J. Dighton. 2004. Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois. and Spartina cynosuroides (L.) Roth., in nursery systems. Restoration Ecology 12: 533–545.

    Google Scholar 

  • McLeod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, et al. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560.

    Google Scholar 

  • McMurdie, P.J., and S. Holmes. 2013. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. https://doi.org/10.1371/journal.pone.0061217.

  • Meyerson, L.A., A.M. Lambert, and K. Saltonstall. 2010. A tale of three lineages: Expansion of common reed (Phragmites australis) in the US Southwest and Gulf Coast. Invasive Plant Science and Management 3: 515–520.

    Google Scholar 

  • Millard, P., and B.K. Singh. 2010. Does grassland vegetation drive soil microbial diversity? Nutrient Cycling in Agroecosystems 88: 147–158.

    Google Scholar 

  • Moore, G.E., D.M. Burdick, C.R. Peter, and R. Donald. 2016. Belowground biomass of Phragmites australis in coastal marshes. Northeastern Naturalist 19: 611–626.

    Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine. 2017. Effective monitoring to evaluate ecological restoration in the Gulf of Mexico. Washington, DC: The National Academies Press. https://doi.org/10.17226/23476.

    Book  Google Scholar 

  • Neubauer, S.C. 2013. Ecosystem responses of a tidal freshwater marsh expereinceing saltwater intrusion and altered hydrology. Estuaries and Coasts 36: 491–507.

    CAS  Google Scholar 

  • Newell, S.Y. 2001. Multiyear patterns of fungal biomass dynamics and productivity within naturally decaying smooth cordgrass shoots. Limnology and Oceanography 46: 573–583.

    Google Scholar 

  • Newman, M.E. 2006. Finding community structure in networks using the eigenvectors of matricies. Physical Review E. https://doi.org/10.1103/PhysRevE.74.036104.

  • Nilsson, R.H., K.-H. Larsson, A.F.S. Taylor, J. Bengtsson-Palme, T.S. Feppesen, D. Schigel, et al. 2018. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 1: gky1022.

    Google Scholar 

  • Oksanen, J., C. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, et al. 2018. vegan: Community Ecology Package R package version 2.5-2.

  • Oren, A. 2014. The family Xanthobacteraceae. In The prokaryotes, ed. E. Rosenberg, E.F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson, 709–726. Berlin: Springer.

    Google Scholar 

  • Pennings, S.C., and M.D. Bertness. 2001. Salt marsh communities. In Marine community ecology, ed. M.D. Bertness, S.D. Haines, and M. Hay, 289–316. Sunderland: Sinaur Associates.

    Google Scholar 

  • Piehler, M.F., C.A. Currin, R. Cassanova, and H.W. Paerl. 1998. Development and N2-fixing activity of the benthic microbial community in transplanted Spartina alterniflora marshes in North Carolina. Restoration Ecology 6: 290–296.

    Google Scholar 

  • Pjevac, P., M. Korlević, J.S. Berg, E. Bura-Nakić, I. Ciglenečki, R. Amann, and S. Orlić. 2015. Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake. Applied and Environmental Microbiology 81 (1): 298–308.

    Google Scholar 

  • Portnoy, J.W., and A.E. Giblin. 1997. Effects of historic tidal restrictions on salt marsh sediment chemistry. Biogeochemistry 36: 275–303.

    CAS  Google Scholar 

  • Prober, S.M., J.W. Leff, S.T. Bates, E.T. Borer, J. Firn, W.S. Harpole, et al. 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters 18: 85–95.

    Google Scholar 

  • R Core Team. 2017. R: A Language and Environment for Statistical Computing. https://www.R-project.org/

  • Ramirez, K.S., J.W. Leff, A. Barberán, S.T. Bates, J. Betley, T.W. Crowther, et al. 2014. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proceedings of the Royal Society B. https://doi.org/10.1098/rspb.2014.1988.

  • Rickey, M.A., and R.C. Anderson. 2004. Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata. Journal of Applied Ecology 41: 888–896.

    Google Scholar 

  • Rognes, T., T. Flouri, B. Nichols, C. Quince, and F. Mahé. 2016. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4: e2584.

    Google Scholar 

  • Roman, C.T., and D.M. Burdick. 2012. A synthesis of research and practice on restoring tides to salt marshes. In Tidal marsh restoration: A synthesis of science and management, ed. C.T. Roman and D.M. Burdick, 2–10. Washington DC: Island Press.

    Google Scholar 

  • Rublee, P., and B.E. Dornseif. 1978. Direct counts of bacteria in the sediments of a North Carolina salt marsh. Estuaries 1: 3–6.

    Google Scholar 

  • Ruiz-Jaen, M.C., and T.M. Aide. 2005. Restoration success: How is it being measured? Restoration Ecology 13: 569–577.

    Google Scholar 

  • Santín, C., J.M. de la Rosa, H. Knicker, X.L. Otero, M.Á. Álvarez, and F.J. González-Vila. 2009. Effects of reclamation and regeneration processes on organic matter from estuarine soils and sediments. Organic Geochemistry 40: 931–941.

    Google Scholar 

  • Shange, R.S., R.O. Ankumah, A.M. Ibekwe, R. Zabawa, and S.E. Dowd. 2012. Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS One. https://doi.org/10.1371/journal.pone.0040338.

  • Sinicrope, T.L., P.G. Hine, R.S. Warren, and W.A. Niering. 1990. Restoration of an impounded salt marsh in New England. Estuaries 13: 25–30.

    Google Scholar 

  • Smith, S.M., and R.S. Warren. 2012. Vegetation responses to tidal restoration. In Tidal marsh restoration: A synthesis of science and management, ed. C.T. Roman and D.M. Burdick, 59–80. Washington DC: Island Press.

    Google Scholar 

  • Smith, S.M., C.T. Roman, M.J. James-Pirri, K. Chapman, J. Portnoy, and E. Gwilliam. 2009. Responses of plant communities to incremental hydrologic restoration of a tide-restricted salt marsh in southern New England (Massacusetts, U.S.A.). Restoration Ecology 17: 606–618.

    Google Scholar 

  • Tedersoo, L., M. Bahram, S. Põlme, U. Kõljalg, N.S. Yorou, K. Abarenkov, et al. 2014. Global diversity and geography of soil fungi. Science 346: 1052–1053.

    Google Scholar 

  • Underwood, A.J. 1992. Beyond BACI: The detection of environmental impacts on populations in the real but variable world. Journal of Experimental Marine Biology and Ecology 161: 145–178.

    Google Scholar 

  • USGS. 2018. National Water Information System. https://nwis.waterdata.usgs.gov/ma/nwis, Accessed: March, 2018.

  • Valiela, I., and M.L. Cole. 2002. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5: 92–100.

    Google Scholar 

  • Van Gemerden, H., and J. Mas. 1995. Ecology of phototrophic sulfur bacteria. In Anoxygenic photosynthetic bacteria. Advances in photosynthesis and respiration, ed. R.E. Blankenship, M.T. Madigan, and C.E. Bauer, 49–85. Dordrecht: Springer.

    Google Scholar 

  • Waldrop, M.P., and M.K. Firestone. 2006. Response of microbial community composition and function to soil climate change. Microbial Ecology 52 (4): 716–724.

    CAS  Google Scholar 

  • Walters, W., E.R. Hyde, D. Berg-lyons, G. Ackermann, G. Humphrey, A. Parada, J.A. Gilbert, and J.K. Jansson. 2015. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1: e0009–e0015.

    Google Scholar 

  • Warren, R.S., P.E. Fell, R. Rozsa, A.H. Brawley, A.C. Orsted, E.T. Olson, V. Swamy, and W.A. Niering. 2002. Salt marsh restoration in Connecticut: 20 years of science and management. Restoration Ecology 10: 49–513.

    Google Scholar 

  • Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.

    Google Scholar 

  • Wortley, L., J.M. Hero, and M. Howes. 2013. Evaluating ecological restoration success: A review of the literature. Restoration Ecology 21: 537–543.

    Google Scholar 

  • Yamamoto, K., Y. Shiwa, T. Ishige, H. Sakamoto, K. Tanaka, M. Uchino, N. Tanaka, S. Oguri, H. Saitoh, and S. Tsushima. 2018. Bacterial diveristy associate with the rhizosphere and endoshpere of two halophytes Glaux maritima and Salicornia europaea. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.02878.

  • Yao, Z., S. Du, C. Liang, Y. Zhao, F. Dini-Andreote, K. Wang, and D. Zhang. 2019. Bacterial community assembly in a typical estuarine marsh with mutliple environmental gradients. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.02602-18.

  • Zak, D.R., W.E. Holmes, D.C. White, A.D. Peacock, and D. Tilman. 2003. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 84: 2042–2050.

    Google Scholar 

  • Zeng, Y., J. Baumbach, E.G. Barbosa, V. Azevedo, C. Zhang, and M. Koblížek. 2016. Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. Envonmental Microbiology Reports 8: 139–149.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Georgeanne Keer and others at the Massachusetts Division of Ecological Restoration for sharing restoration plans and homeowners who allowed access to the marshes used in this study. Field assistance was provided by Annie Murphy and Itxaso Garay. Thanks are due to Alan Stebbins at University of Massachusetts Boston Environmental Analytical Facility (NSF 09-42371 and DBI:MRI-RI2 to Robyn Hannigan and Alan Christian) for assistance in the laboratory. Tom Goodkind, in the University of Massachusetts Boston Machine Shop, provided essential help in constructing sampling equipment associated with this experiment, and resources purchased with funds from the NSF FMSL program (DBI 1722553, to Northeastern University) were used to generate data for this manuscript.

Funding

This work was funded by an NSF CAREER grant (DEB1350491) to JLB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Bowen.

Additional information

Communicated by Deana Erdner

Electronic supplementary material

ESM 1

(DOCX 942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynum, C.A., Bulseco, A.N., Dunphy, C.M. et al. Microbial Community Response to a Passive Salt Marsh Restoration. Estuaries and Coasts 43, 1439–1455 (2020). https://doi.org/10.1007/s12237-020-00719-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00719-y

Keywords

Navigation