Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Physical and Biogeochemical Factors Driving Spatially Heterogeneous Phytoplankton Blooms in Nearshore Waters of Santa Monica Bay, USA

Abstract

Phytoplankton blooms in nearshore waters are difficult to predict using only biogeochemical factors known to control phytoplankton growth, yet the need to understand these events continues to grow with expanding harmful algal bloom (HAB) events. The present study investigated the spatial and temporal dynamics of phytoplankton blooms and their drivers in King Harbor, a harbor in Santa Monica Bay in the Southern California Bight. High-frequency sensor measurements of environmental variables and biomass and discrete sampling of phytoplankton community composition and nutrients over an annual cycle were obtained. Eleven distinct bloom events, nine of which were numerically dominated by dinoflagellates, were identified over the study period. Results from both regression-based and time series analyses show that these blooms were correlated with increased temperature, changes in nutrient concentrations, and decreased tidally driven mixing, revealing an opportunity for bloom initiation close to neap tides. Predictors of chlorophyll biomass and environmental factors that explained differences in microplankton community structure differed between the two basins of King Harbor, despite their close and connected nature. Biomass and HAB taxa abundances in the harbor were significantly correlated with those in Santa Monica Bay with a 1-week lag in the harbor data, suggesting possible onshore transport of organisms into the harbor. The results of this study quantify the significant influence of tidal cycle as a physical process operating locally and at timescales of hours to days and provide evidence for a high degree of spatial heterogeneity in bloom dynamics in nearshore environments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abi-Khalil, C., C. Lopez-Joven, E. Abadie, V. Savar, Z. Amzil, M. Laabir, and J.-L. Rolland. 2016. Exposure to the paralytic shellfish toxin producer Alexandrium catenella increases the susceptibility of the oyster Crassostrea gigas to pathogenic Vibrios. Toxins 8: 24.

  2. Akmajian, A.M., J.J. Scordino, and A. Acevedo-Gutiérrez. 2017. Year-round algal toxin exposure in free-ranging sea lions. Marine Ecology Progress Series 583: 243–258.

  3. Anderson, D., P. Hoagland, Y. Kaoru, and A. W. White. 2000. Estimated annual economic impacts from harmful algal blooms (HABs) in the United States. Woods Hole Oceanographic Institution Technical Report: WHOI-2000–2011. Woods Hole, MA: Woods Hole Oceanogr Inst.

  4. Anderson, D.M., P.M. Glibert, and J.M. Burkholder. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25: 704–726.

  5. Babin, M., J. Cullen, C. Roesler, P.L. Donaghay, G.J. Doucette, M. Kahru, M. Lewis, C.A. Scholin, M. Sieracki, and H. Sosik. 2005. New approaches and technologies for observing harmful algal blooms. Oceanography 18: 210–227.

  6. Balch, W.M. 1981. An apparent lunar tidal cycle of phytoplankton blooming and community succession in the Gulf of Maine. Journal of Experimental Marine Biology and Ecology 55: 65–77.

  7. Bialonski, S., D.A. Caron, J. Schloen, U. Feudel, H. Kantz, and S.D. Moorthi. 2016. Phytoplankton dynamics in the Southern California Bight indicate a complex mixture of transport and biology. Journal of Plankton Research 38: 1077–1091.

  8. Blauw, A.N., E. Benincà, R.W.P.M. Laane, N. Greenwood, and J. Huisman. 2012. Dancing with the tides: fluctuations of coastal phytoplankton orchestrated by different oscillatory modes of the tidal cycle. PLoS One 7: e49319.

  9. Bray, J.R., and J.T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

  10. Brody, S.R., M.S. Lozier, and J.P. Dunne. 2013. A comparison of methods to determine phytoplankton bloom initiation. Journal of Geophysical Research: Oceans 118: 2345–2357.

  11. Carey, C.C., P.C. Hanson, R.C. Lathrop, and A.L.St. Amand. 2016. Using wavelet analyses to examine variability in phytoplankton seasonal succession and annual periodicity. Journal of Plankton Research 38: 27–40.

  12. Carstensen, J., P. Henriksen, and A.-S. Heiskanen. 2007. Summer algal blooms in shallow estuaries: definition, mechanisms, and link to eutrophication. Limnology and Oceanography 52: 370–384.

  13. Clarke, K.R., and R.N. Gorley. 2015. PRIMER v7: User manual/tutorial. Plymouth PRIMER-E U.K.

  14. Clarke, K.R., R.N. Gorley, P.J. Somerfield, and R.M. Warwick. 2014. Change in marine communities: an approach to statistical analysis and interpretation. 3nd ed. Plymouth: PRIMER-E.

  15. Cloern, J.E. 1991. Tidal stirring and phytoplankton bloom dynamics in an estuary. Journal of Marine Research 49: 203–221.

  16. Cloern, J.E., S.Q. Foster, and A.E. Kleckner. 2014. Phytoplankton primary production in the world's estuarine-coastal ecosystems. Biogeosciences 11: 2477–2501.

  17. Clough, J., and S. Strom. 2005. Effects of Heterosigma akashiwo (Raphidophyceae) on protist grazers: laboratory experiments with ciliates and heterotrophic dinoflagellates. Aquatic Microbial Ecology 39: 121–134.

  18. Cole, H.S., A.P. Martin, A. Yool, and S. Henson. 2015. Basin-wide mechanisms for spring bloom initiation: How typical is the North Atlantic? ICES Journal of Marine Science 72: 2029–2040.

  19. Colin, S.P., and H.G. Dam. 2003. Effects of the toxic dinoflagellate Alexandrium fundyense on the copepod Acartia hudsonica: a test of the mechanisms that reduce ingestion rates. Marine Ecology-Progress Series 248: 55–65.

  20. Corcoran, A.A., and R.F. Shipe. 2011. Inshore-offshore and vertical patterns of phytoplankton biomass and community composition in Santa Monica Bay, CA (USA). Estuarine, Coastal and Shelf Science 94: 24–35.

  21. Cullen, J. 2008. Observation and prediction of harmful algal blooms, in Real-Time Coastal Observing Systems for Marine Ecosystem Dynamics and Harmful Algal Blooms: Theory, Instrumentation and Modelling, eds M. Babin, et al. (Paris: UNESCO), 1–41.

  22. Dagenais-Bellefeuille, S., and D. Morse. 2013. Putting the N in dinoflagellates. Frontiers in Microbiology 4: 369–369.

  23. Doney, S.C., M. Ruckelshaus, J.E. Duffy, J.P. Barry, F. Chan, C.A. English, H.M. Galindo, J.M. Grebmeier, A.B. Hollowed, N. Knowlton, J. Polovina, N.N. Rabalais, W.J. Sydeman, and L.D. Talley. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4: Null.

  24. Doucette, G.J., and R.M. Kudela. 2017. Chapter twelve in situ and real-time identification of toxins and toxin-producing microorganisms in the environment. In Recent Advances in the Analysis of Marine Toxins, 411–443.

  25. Egerton, T.A., R.E. Morse, H.G. Marshall, and M.R. Mulholland. 2014. Emergence of algal blooms: The effects of short-term variability in water quality on phytoplankton abundance, diversity, and community composition in a tidal estuary. Microorganisms 2 (1): 33–57.

  26. Fernandes, L.F., K.A. Hubbard, M.L. Richlen, J. Smith, S.S. Bates, J. Ehrman, C. Leger, L.L. Mafra Jr., D. Kulis, M. Quilliam, K. Libera, L. McCauley, and D.M. Anderson. 2014. Diversity and toxicity of the diatom Pseudo-nitzschia peragallo in the Gulf of Maine, northwestern Atlantic Ocean. Deep Sea Res Part 2 Top Stud Oceanogr 103: 139–162.

  27. Figueroa, R.I., and I. Bravo. 2005. Sexual reproduction and two different encystement strategies of Lingulodinium polyedrum (Dinophyceae) in culture. Journal of Phycology 41: 370–379.

  28. Fritsch, F.N., and R.E. Carlson. 1980. Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis 17: 238–246.

  29. Ganju, N.K., M.J. Brush, B. Rashleigh, A.L. Aretxabaleta, P. Del Barrio, J.S. Grear, L.A. Harris, S.J. Lake, G. McCardell, J. O'Donnell, D.K. Ralston, R.P. Signell, J.M. Testa, and J.M. Vaudrey. 2016. Progress and challenges in coupled hydrodynamic-ecological estuarine modeling. Estuaries and Coasts: Journal of the Estuarine Research Federation 39 (2): 311–332.

  30. Glibert, P.M., J.I. Allen, A.F. Bouwman, C.W. Brown, K.J. Flynn, A.J. Lewitus, and C.J. Madden. 2010. Modeling of HABs and eutrophication: status, advances, challenges. Journal of Marine Systems 83: 262–275.

  31. Glibert, P.M., F.P. Wilkerson, R.C. Dugdale, J.A. Raven, C.L. Dupont, P.R. Leavitt, A.E. Parker, J.M. Burkholder, and T.M. Kana. 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnology and Oceanography 61: 165–197.

  32. Graham, S., and S. Strom. 2010. Growth and grazing of microzooplankton in response to the harmful alga Heterosigma akashiwo in prey mixtures. Aquatic Microbial Ecology 59: 111–124.

  33. Grinsted, A., J.C. Moore, and S. Jevrejeva. 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys 11: 561–566. https://doi.org/10.5194/npg-11-561-2004.

  34. Grzebyk, D., and B. Berland. 1996. Influences of temperature, salinity and irradiance on growth of Prorocentrum minimum (Dinophyceae) from the Mediterranean Sea. Journal of Plankton Research 18: 1837–1849.

  35. Hallegraeff, G.M. 2010. Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. Journal of Phycology 46: 220–235.

  36. Heisler, J., P.M. Glibert, J.M. Burkholder, D.M. Anderson, W. Cochlan, W.C. Dennison, Q. Dortch, C.J. Gobler, C.A. Heil, E. Humphries, A. Lewitus, R. Magnien, H.G. Marshall, K. Sellner, D.A. Stockwell, D.K. Stoecker, and M. Suddleson. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8 (1): 3–13.

  37. Hickey, B.M. 1979. The California current system—hypotheses and facts. Progress in Oceanography 8: 191–279.

  38. Ho, J.C., and A.M. Michalak. 2015. Challenges in tracking harmful algal blooms: a synthesis of evidence from Lake Erie. Journal of Great Lakes Research 41: 317–325.

  39. Howard, M.D.A., M. Sutula, D.A. Caron, Y. Chao, J.D. Farrara, H. Frenzel, B. Jones, G. Robertson, K. McLaughlin, and A. Sengupta. 2014. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California bight. Limnology and Oceanography 59: 285–297.

  40. Hu, C., F.E. Muller-Karger, C. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil. 2005. Red tide detection and tracing using MODIS fluorescence data: a regional example in SW Florida coastal waters. Remote Sensing of Environment 97: 311–321.

  41. Imai, I. 2012. Biology and ecology of harmful algal blooms (20): interactions between red tide plankton species - 1. Aquabiology (Tokyo) 34: 160–167.

  42. Kahru, M., and B.G. Mitchell. 1998. Spectral reflectance and absorption of a massive red tide off Southern California. Journal of Geophysical Research-Oceans 103: 21601–21609.

  43. Kaitala, S. 2019. Development of the operational observation system of harmful algal blooms as a BOOS project. Copenhagen: ICES.

  44. Kim, H.-J., A.J. Miller, J. McGowan, and M.L. Carter. 2009. Coastal phytoplankton blooms in the Southern California bight. Progress in Oceanography 82: 137–147.

  45. Kudela, R.M., S. Seeyave, and W.P. Cochlan. 2010. The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Progress in Oceanography 85: 122–135.

  46. Lefebvre, K.A., L. Quakenbush, E. Frame, K.B. Huntington, G. Sheffield, R. Stimmelmayr, A. Bryan, P. Kendrick, H. Ziel, T. Goldstein, J.A. Snyder, T. Gelatt, F. Gulland, B. Dickerson, and V. Gill. 2016. Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment. Harmful Algae 55: 13–24.

  47. Legaard, K.R., and A.C. Thomas. 2006. Spatial patterns in seasonal and interannual variability of chlorophyll and sea surface temperature in the California current. Journal of Geophysical Research: Oceans 111. C06032, https://doi.org/10.1029/2005JC003282.

  48. Leles, S., C. Alves-de-Souza, C. de Oliveira Faria, A. Beatriz Ramos, A. Macedo Fernandes, and G. Aparecida de Oliveira Moser. 2014. Short-term phytoplankton dynamics in response to tidal stirring in a tropical estuary (southeastern Brazil). Brazilian Journal of Oceanography 62: 341–349.

  49. Lewitus, A.J., R.A. Horner, D.A. Caron, E. Garcia-Mendoza, B.M. Hickey, M. Hunter, D.D. Huppert, R.M. Kudela, G.W. Langlois, J.L. Largier, E.J. Lessard, R. RaLonde, J.E. Jack Rensel, P.G. Strutton, V.L. Trainer, and J.F. Tweddle. 2012. Harmful algal blooms along the north American west coast region: History, trends, causes, and impacts. Harmful Algae 19: 133–159.

  50. Lucas, L.V., J.R. Koseff, J.E. Cloern, S.G. Monismith, and J.K. Thompson. 1999. Processes governing phytoplankton blooms in estuaries. I: the local production-loss balance. Marine Ecology Progress Series 187: 1–15.

  51. Macias, D., M.R. Landry, A. Gershunov, A.J. Miller, and P.J.S. Franks. 2012. Climatic control of upwelling variability along the Western north-American coast. PLoS One 7: e30436.

  52. Mantyla, A.W., S.J. Bograd, and E.L. Venrick. 2008. Patterns and controls of chlorophyll-a and primary productivity cycles in the Southern California bight. Journal of Marine Systems 73: 48–60.

  53. Maraun, D., J. Kurths. 2004. Cross wavelet analysis: significance testing and pitfalls. Nonlinear Processes in Geophysics, European Geosciences Union (EGU), 11 (4), pp.505–514. ffhal-00302384f

  54. Maraun, D., J. Kurths, and M. Holschneider. 2007. Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation and significance testing. Physical Review E 75: 016707.

  55. McCabe, R.M., B.M. Hickey, E.P. Dever, and P. MacCready. 2015. Seasonal cross-shelf flow structure, upwelling relaxation, and the alongshelf pressure gradient in the northern California current system. Journal of Physical Oceanography 45: 209–227.

  56. Michael, S.W., C.H. Kenneth, J.L. Alan, L.W. Jennifer, and L.W. David. 2006. Variability in phytoplankton pigment biomass and taxonomic composition over tidal cycles in a salt marsh estuary. Marine Ecology Progress Series 320: 109–120.

  57. Miller, M.A., R.M. Kudela, A. Mekebri, D. Crane, S.C. Oates, M.T. Tinker, M. Staedler, W.A. Miller, S. Toy-Choutka, C. Dominik, D. Hardin, G. Langlois, M. Murray, K. Ward, and D.A. Jessup. 2010. Evidence for a novel marine harmful algal bloom: Cyanotoxin (microcystin) transfer from land to sea otters. PLoS One 5: e12576.

  58. Moorthi, S.D., P.D. Countway, B.A. Stauffer, and D.A. Caron. 2006. Use of quantitative real-time PCR to investigate the dynamics of the red tide dinoflagellate Lingulodinium polyedrum. Microbial Ecology 52 (1): 136–150.

  59. Moser, G.A.O., F.R. Piedras, A.B.J. Oaquim, D.S. Souza, S.G. Leles, D.T. de Lima, A.B.A. Ramos, C.d.O. Farias, and A.M. Fernandes. 2017. Tidal effects on phytoplankton assemblages in a near-pristine estuary: a trait-based approach for the case of a shallow tropical ecosystem in Brazil. Marine Ecology 38: e12450.

  60. Mulholland, M.R., R. Morse, T. Egerton, P.W. Bernhardt, and K.C. Filippino. 2018. Blooms of dinoflagellate mixotrophs in a lower Chesapeake Bay tributary: carbon and nitrogen uptake over diurnal, seasonal, and interannual timescales. Estuaries & Coasts 41: 1744–1765.

  61. Nezlin, N.P., and B.L. Li. 2003. Time-series analysis of remote-sensed chlorophyll and environmental factors in the Santa Monica-San Pedro Basin off Southern California. Journal of Marine Systems 39: 185–202.

  62. Nezlin, N.P., J.J. Oram, P.M. DiGiacomo, and N. Gruber. 2004. Sub-seasonal to interannual variations of sea surface temperature, salinity, oxygen anomaly, and transmissivity in Santa Monica Bay, California from 1987 to 1997. Continental Shelf Research 24: 1053–1082.

  63. Nezlin, N.P., M.A. Sutula, R.P. Stumpf, and A. Sengupta. 2012. Phytoplankton blooms detected by SeaWiFS along the central and southern California coast. Journal of Geophysical Research: Oceans: 117. C07004, https://doi.org/10.1029/2011JC007773.

  64. O'Neil, J.M., T.W. Davis, M.A. Burford, and C.J. Gobler. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.

  65. Omand, M.M., F. Feddersen, R.T. Guza, and P.J.S. Franks. 2012. Episodic vertical nutrient fluxes and nearshore phytoplankton blooms in Southern California. Limnology and Oceanography 57: 1673–1688.

  66. Omand, M.M., J.J. Leichter, P.J.S. Franks, R.T. Guza, A.J. Lucas, and F. Feddersen. 2011. Physical and biological processes underlying the sudden surface appearance of a red tide in the nearshore. Limnology and Oceanography 56: 787–801.

  67. Orrico, C.M., C. Moore, D. Romanko, A. Derr, A.H. Barnard, C. Janzen, N. Larson, D. Murphy, R. Johnson, and J. Bauman. 2007. WQM: a new integrated water quality monitoring package for long-term in-situ observation of physical and biogeochemical parameters. In Oceans 2007 MTS/IEEE Vancouver.

  68. Paerl, H.W., W.S. Gardner, K.E. Havens, A.R. Joyner, M.J. McCarthy, S.E. Newell, B. Qin, and J.T. Scott. 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54: 213–222.

  69. Palacios, D.M., E.L. Hazen, I.D. Schroeder, and S.J. Bograd. 2013. Modeling the temperature-nitrate relationship in the coastal upwelling domain of the California Current. Journal of Geophysical Research: Oceans 118: 3223–3239.

  70. Place, A.R., H.A. Bowers, T.R. Bachvaroff, J.E. Adolf, J.R. Deeds, and J. Sheng. 2012. Karlodinium veneficum—the little dinoflagellate with a big bite. Harmful Algae 14: 179–195.

  71. Rabalais, N.N., R.E. Turner, R.J. Diaz, and D. Justić. 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science 66: 1528–1537.

  72. Ralston, D.K., M.L. Brosnahan, S.E. Fox, K. Lee, and D.M. Anderson. 2015. Temperature and residence time controls on an estuarine harmful algal bloom: modeling hydrodynamics and Alexandrium fundyense in Nauset estuary. Estuaries and coasts : journal of the Estuarine Research Federation 38 (6): 2240–2258.

  73. Reifel, K.M., A.A. Corcoran, C. Cash, R. Shipe, and B.H. Jones. 2013. Effects of a surfacing effluent plume on a coastal phytoplankton community. Continental Shelf Research 60: 38–50.

  74. Ruiz-de la Torre, M.C., H. Maske, J. Ochoa, and C.O. Almeda-Jauregui. 2013. Maintenance of coastal surface blooms by surface temperature stratification and wind drift. PLoS One 8: e58958.

  75. Ryan, J.P., A.M. Fischer, R.M. Kudela, J.F.R. Gower, S.A. King, R. Marin, and F.P. Chavez. 2009. Influences of upwelling and downwelling winds on red tide bloom dynamics in Monterey Bay, California. Continental Shelf Research 29: 785–795.

  76. Ryan, J.P., J.F.R. Gower, S.A. King, W.P. Bissett, A.M. Fischer, R.M. Kudela, Z. Kolber, F. Mazzillo, E.V. Rienecker, and F.P. Chavez. 2008. A coastal ocean extreme bloom incubator. Geophysical Research Letters 35. L12602, https://doi.org/10.1029/2008GL034081.

  77. Ryan, J.P., R.M. Kudela, J.M. Birch, M. Blum, H.A. Bowers, F.P. Chavez, G.J. Doucette, K. Hayashi, R. Marin III, C.M. Mikulski, J.T. Pennington, C.A. Scholin, G.J. Smith, A. Woods, and Y. Zhang. 2017. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 Northeast Pacific warm anomaly. Geophysical Research Letters 44: 5571–5579.

  78. Schnetzer, A., P.E. Miller, R.A. Schaffner, B.A. Stauffer, B.H. Jones, S.B. Weisberg, P.M. DiGiacomo, W.M. Berelson, and D.A. Caron. 2007. Blooms of Pseudo-nitzschia and domoic acid in the San Pedro Channel and Los Angeles harbor areas of the Southern California Bight, 2003-2004. Harmful Algae 6: 372–387.

  79. Schwing, F.B., M. O’Farrell, J.M. Steger, and K. Baltz. 1996. Coastal upwelling indices west coast of North America 1946–1995, ed. N.O.a.A.A. U.S. Dept. of Commerce, National Marine Fisheries Service, 32.

  80. Seegers, B.N., J.M. Birch, R. Marin, C.A. Scholin, D.A. Caron, E.L. Seubert, M.D.A. Howard, G.L. Robertson, and B.H. Jones. 2015. Subsurface seeding of surface harmful algal blooms observed through the integration of autonomous gliders, moored environmental sample processors, and satellite remote sensing in southern California. Limnology and Oceanography 60: 754–764.

  81. Sengupta, A., M. Sutula, K. McLaughlin, M. Howard, L. Tiefenthaler, and T. Von Bitner. 2013. Terrestrial nutrient loads and fluxes to the Southern California Bight, USA. Southern California Coastal Water Research Project 2013 Annual Report, 245e258.

  82. Seubert, E.L., A.G. Gellene, M.D. Howard, P. Connell, M. Ragan, B.H. Jones, J. Runyan, and D.A. Caron. 2013. Seasonal and annual dynamics of harmful algae and algal toxins revealed through weekly monitoring at two coastal ocean sites off southern California, USA. Environmental Science and Pollution Research International 20 (10): 6878–6895.

  83. Shanks, A.L., S.G. Morgan, J. Macmahan, A. Reniers, M. Jarvis, J. Brown, A. Fujimura, and C. Griesemer. 2014. Onshore transport of plankton by internal tides and upwelling-relaxation events. Marine Ecol. Prog. Ser. 502: 39–51.

  84. Shipe, R.F., A. Leinweber, and N. Gruber. 2008. Abiotic controls of potentially harmful algal blooms in Santa Monica Bay, California. Continental Shelf Research 28: 2584–2593.

  85. Siegel, D.A., S.C. Doney, and J.A. Yoder. 2002. The North Atlantic spring phytoplankton bloom and Sverdrup’s critical depth hypothesis. Science 296 (5568): 730–733.

  86. Sin, Y., R.L. Wetzel, and I.C. Anderson. 1999. Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the York River Estuary, Virginia: analyses of long-term data. Estuaries 22: 260–275.

  87. Smayda, T.J. 1997. What is a bloom? A commentary. Limnology and Oceanography 42: 1132–1136.

  88. Smayda, T.J. 2010. Adaptations and selection of harmful and other dinoflagellate species in upwelling systems 1. Morphology and adaptive polymorphism. Progress in Oceanography 85: 53–70.

  89. Smith, J., P. Connell, R.H. Evans, A.G. Gellene, M.D.A. Howard, B.H. Jones, S. Kaveggia, L. Palmer, A. Schnetzer, B.N. Seegers, E.L. Seubert, A.O. Tatters, and D.A. Caron. 2018. A decade and a half of Pseudo-nitzschia spp. and domoic acid along the coast of southern California. Harmful Algae 79: 87–104.

  90. Soares, M.C.S., M.M. Marinho, S.M.O.F. Azevedo, C.W.C. Branco, and V.L.M. Huszar. 2012. Eutrophication and retention time affecting spatial heterogeneity in a tropical reservoir. Limnologica 42: 197–203.

  91. Stauffer, B.A., A.G. Gellene, A. Schnetzer, E.L. Seubert, C. Oberg, G.S. Sukhatme, and D.A. Caron. 2012. An oceanographic, meteorological and biological ‘perfect storm’ yields a massive fish kill. Marine Ecology - Progress Series 468: 231–243.

  92. Stauffer, B.A., A. Schnetzer, A.G. Gellene, C. Oberg, G.S. Sukhatme, and D.A. Caron. 2013. Effects of an acute hypoxic event on microplankton community structure in a coastal harbor of Southern California. Estuaries and Coasts 36: 135–148.

  93. Stauffer, B.A., H.A. Bowers, E. Buckley, T.W. Davis, T.H. Johengen, R. Kudela, M.A. McManus, H. Purcell, G.J. Smith, A. Vander Woude, and M.N. Tamburri. 2019. Considerations in harmful algal bloom research and monitoring: perspectives from a consensus-building workshop and technology testing. Frontiers in Marine Science 6:399. https://doi.org/10.3389/fmars.2019.00399.

  94. Stauffer BA, Gellene AG, Schnetzer A, Seubert EL, Oberg C, Sukhatme GS, Caron DA (2012) An oceanographic, meteorological, and biological ‘perfect storm’ yields a massive fish kill. Mar Ecol Prog Ser 468: 231–243. https://doi.org/10.3354/meps09927.

  95. Stauffer, B.A., A.G. Gellene, D. Rico, C. Sur, and D.A. Caron. 2017. Grazing of the heterotrophic dinoflagellate Noctiluca scintillans on dinoflagellate and raphidophyte prey. Aquatic Microbial Ecology 80: 193–207.

  96. Strickland, J. D. H. and T. R. Parsons. 1972. A practical handbook of seawater analysis, 2nd ed. Fisheries Research Board of Canada Bulletin No. 167, Ottawa.

  97. Strub, P.T., C. James, A.C. Thomas, and M.R. Abbott. 1990. Seasonal and nonseasonal variability of satellite-derived surface pigment concentration in the California Current. Journal of Geophysical Research: Oceans 95: 11501–11530.

  98. Todd, R.E., D.L. Rudnick, and R.E. Davis. 2009. Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006. Journal of Geophysical Research 114: C06001.

  99. Torrence, C. and G.P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc 79: 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

  100. Trainer, V.L., G.C. Pitcher, B. Reguera, and T.J. Smayda. 2010. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Progress in Oceanography 85: 33–52.

  101. Turner, J.T., and P.A. Tester. 1997. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnology and Oceanography 42: 1203–1214.

  102. Utermohl, H. 1931. Neue Wege in der quantitativen Erfassung des Plankton. Verhandlungen der Internationalen Vereinigung fuer Theoretische Limnologie Stuttgart 5: 567–596.

  103. Utermohl, H. 1958. Zur Gewassertypenfrage tropischer Seen. Verhandlungen Internationalen Vereinigung Limnologie 13 (1): 236–251.

  104. Weissbach, A., M. Rudstrom, M. Olofsson, C. Bechemin, J. Icely, A. Newton, U. Tillmann, and C. Legrand. 2011. Phytoplankton allelochemical interactions change microbial food web dynamics. Limnology and Oceanography 56: 899–909.

  105. Wilcox, R.R. 2003. Applying contemporary statistical techniques. New York: Academic Press.

  106. Xu, N., Y.Z. Tang, J. Qin, S. Duan, and C.J. Gobler. 2015. Ability of the marine diatoms Pseudo-nitzschia multiseries and P. pungens to inhibit the growth of co-occurring phytoplankton via allelopathy. Aquatic Microbial Ecology 74: 29–41.

  107. Zeng, L., and D. Li. 2015. Development of in situ sensors for chlorophyll concentration measurement. Journal of Sensors 2015: 16.

Download references

Acknowledgments

The authors thank J.M. Rose for assistance in statistical analyses, R.A. Schaffner for assistance in mapping, and B.H. Jones for helpful conversations on the analyses of time series data. The authors also gratefully acknowledge L. Darjany, A.G. Gellene, C. Oberg, E.L. Seubert, A. Schnetzer, and P.E. Connell for technical assistance conducting the field work and assistance in collection and processing of samples. This study was made possible with the help of the City of Redondo Beach Fire Department, the Los Angeles County Lifeguards, the King Harbor Marina operators, and the City of Redondo Beach, who provided invaluable site access and logistical support. This paper is dedicated to the memory of Scott Duke-Sylvester, a colleague who left us too soon and who provided guidance in revising the statistical analyses in this study.

Funding

This research was supported by the National Science Foundation (Award #CCR-0120778 to D.A.C. and G.S.S.). Manuscript writing was supported by the National Academies for Science, Engineering, and Medicine Gulf Research Program Early Career Fellowship (Award #2000009659 to B.A.S).

Author information

Correspondence to Beth A. Stauffer.

Additional information

Communicated by James L. Pinckney

Electronic Supplementary Material

ESM 1

(PDF 152 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stauffer, B.A., Sukhatme, G.S. & Caron, D.A. Physical and Biogeochemical Factors Driving Spatially Heterogeneous Phytoplankton Blooms in Nearshore Waters of Santa Monica Bay, USA. Estuaries and Coasts (2020). https://doi.org/10.1007/s12237-020-00704-5

Download citation

Keywords

  • Algal blooms
  • Nearshore environments
  • Physical forcing
  • Tidal stirring
  • Dinoflagellate