Skip to main content

Advertisement

Log in

Depth Affects Seagrass Restoration Success and Resilience to Marine Heat Wave Disturbance

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Accelerating losses of seagrass meadows motivate the restoration of these highly productive and beneficial ecosystems. Understanding how environmental parameters including depth and temperature affect restoration trajectories through time is key to conserving and restoring seagrass meadows. We used a long-term (12-year), landscape-scale experiment to test the effect of depth on eelgrass (Zostera marina) restoration success and resilience to a marine heat wave (MHW) disturbance. We found that depth was a critical determinant of seagrass restoration success, with no long-term success at sites deeper than 1.5 m below mean sea level (MSL) or shallower than − 0.8 m MSL. Seeds germinated below − 1.5 m MSL, but shoots did not persist, confirming earlier predictions from a hydrodynamic-vegetation model. Depth was also a significant predictor of seagrass resilience following MHW disturbance. Our results suggest that areas of restored seagrass that are resilient to temperature stress exist across an intermediate depth range, excluding the shallowest and deepest portions of the full habitable depth range for restored seagrass. Over the next decades, sea-level rise will likely affect both the habitable area and the resilient area, available for seagrass restoration. However, seagrass enhancement of sediment accretion may at least partially offset sea-level rise rates. As ocean temperatures warm and MHWs occur more frequently, the resilience of seagrass meadows to temperature stress will be of increasing concern. These results suggest that depth is a critical parameter that will help determine what areas are most resilient and therefore most suitable for conservation and restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgments

We thank the staff and volunteers at the University of Virginia’s Coastal Research Center for assistance in the field.

Funding

This work was funded by the National Science Foundation grants DEB-1237733 and DEB-1832221 to the Virginia Coast Reserve Long-Term Ecological Research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lillian R. Aoki.

Additional information

Communicated by Melisa C. Wong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, L.R., McGlathery, K.J., Wiberg, P.L. et al. Depth Affects Seagrass Restoration Success and Resilience to Marine Heat Wave Disturbance. Estuaries and Coasts 43, 316–328 (2020). https://doi.org/10.1007/s12237-019-00685-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00685-0

Keywords

Navigation