Skip to main content

Advertisement

Log in

Variability of the Thermohaline Field in a Large Tropical, Well-Mixed Estuary: the Influence of an Extreme Draught Event

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Todos os Santos Bay (BTS) is one of eleven large estuaries along the semi-arid Brazilian northeast coast. It is a positive, well-mixed estuary undergoing progressive fresh water limitations due to natural climatic processes and direct human intervention to the fluvial hydrology. This study investigates the variability of the thermohaline field along three water years (2013–2015) that encompassed close-to-normal hydric conditions and the most severe regional drought in the historical record. Moored temperature and conductivity sensors, monthly CTD profiling along the bay axis, and historical records of meteorology and river discharges showed that the seasonal oscillations of the thermohaline field are 2- to 3-fold larger than higher, tidal frequency oscillations, and that BTS becomes a seasonally negative, hypersaline estuary during a drought. Also, a density plug and inverse estuarine circulation can arise with a delay of the rainy season. Negative ecological impacts have been associated with such hydrographic conditions. Long-term climatic trends and future climatic projections indicate that the BTS and its catchment area may undergo more frequent and acute droughts, suggesting that the bay may often become a seasonally negative estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ardiansyah, S., B. Irawan, and A. Soegianto. 2012. Effect of cadmium and zinc in different salinity levels on survival and osmoregulation of white shrimp (Litopenaeus vannamei Boone). Marine and Freshwater Behaviour and Physiology 45 (4): 291–302. https://doi.org/10.1080/10236244.2012.734056.

    Article  CAS  Google Scholar 

  • Brito, S.S.B., A.P.M.A. Cunha, C.C. Cunningham, R.C. Alvalá, J.A. Marengo, and M.A. Carvalho. 2018. Frequency, duration and severity of drought in the semiarid Northeast Brazil region. International Journal of Climatology 38 (2): 517–529. https://doi.org/10.1002/joc.5225.

    Article  Google Scholar 

  • Cabrera, O.C., C.L. Villanoy, G.S. Jacinto, L.P.C. Bernardo, C.M. Ferrera, I.B. Velasquez, and R.V. Azanza. 2014. Salt-plug estuarine circulation in Malampaya sound, Palawan, Philippines. Philippine Science Letters 7 (2): 428–437.

    Google Scholar 

  • CEPLAB. 1979. Bacias Hidrográficas do Estado da Bahia, Centro de Planejamento da Bahia. Séries Recursos Naturais, Salvador, Bahia, p215.

  • Cirano, M., and G.C. Lessa. 2007. Oceanographic characteristics of Baía de Todos os Santos. Brasil. Revista Brasileira de Geofísica 25 (4): 363–387. https://doi.org/10.1590/S0102-261X2007000400002.

    Article  Google Scholar 

  • Cooper, J.A.G. 2001. Geomorphological variability among microtidal estuaries from the wave-dominated south African coast. Geomorphology 40 (1-2): 99–122.

    Article  Google Scholar 

  • De Silva Samarasinghe, J.R., L. Bodeb, and L.B. Mason. 2003. Modelled response of gulf St Vincent (South Australia) to evaporation, heating and winds. Continental Shelf Research 23 (14–15): 1285–1313. https://doi.org/10.1016/S0278-4343(03)00129-8.

    Article  Google Scholar 

  • Epifanio, C.E.. 1988. Transport of crab larvae between estuaries and the continental shelf. In: O. Jansson (Ed.). Lecture Notes on Coastal and Estuarine Studies, Vol. 22 B.- Coastal-Offshore Ecosystem' Interactions. Springer-Verlag Berlin, pp. 291–305. doi: https://doi.org/10.1007/978-3-642-52452-3_14

  • Floser, G., H. Burchard, and R. Riethmuller. 2011. Observational evidence for estuarine circulation in the German Wadden Sea. Continental Shelf Research 31 (16): 1633–1639. https://doi.org/10.1016/j.csr.2011.03.014.

    Article  Google Scholar 

  • Genz, F., and G.C. Lessa. 2015. Twenty-six years of uneven changes in low flows due to different uses and operation of a large dam in a semiarid river. Revista Brasileira de Recursos Hídricos 20 (2): 523–532. https://doi.org/10.21168/rbrh.v20n2.p523-532.

    Article  Google Scholar 

  • Genz, F., and L.D. Luz. 2012. Distinguishing the effects of climate on discharge in a tropical river highly impacted by large dams. Hydrological Sciences Journal 57 (5): 1020–1034. https://doi.org/10.1080/02626667.2012.690880.

    Article  Google Scholar 

  • Geyer, W.C., and P. MacCready. 2014. The estuarine circulation. Annual Review of Fluid Mechanics 46 (1): 175–197. https://doi.org/10.1146/annurev-fluid-010313-141302.

    Article  Google Scholar 

  • Gräwe, U., J.O. Wolff, and J. Ribbe. 2009. Mixing, hypersalinity and gradients in Hervey Bay, Australia. Ocean Dynamics 59 (5): 643–658. https://doi.org/10.1007/s10236-009-0195-4.

    Article  Google Scholar 

  • Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y. Charabi, F.J. Dentener, E.J. Dlugokencky, D.R. Easterling, A. Kaplan, B.J. Soden, P.W. Thorne, M. Wild, and P.M. Zhai. 2013. Observations: Atmosphere and surface. In Climate change 2013: The physical science basis, ed. T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

    Google Scholar 

  • INMET. 1992. Normas Climatológicas - 1961 a 1990, Ministério da Agricultura, Pecuária e Abastecimento, p. 155.

  • Kjerfve, B., C.A.F. Schettini, B. Knoppers, G.C. Lessa, and H.O. Ferreira. 1996. Hydrology and salt balance in a large. Hyper-saline coastal lagoon: Lagoa de Araruama. Brazil. Estuarine, Coastal and Shelf Science 42 (6): 701–725. https://doi.org/10.1006/ecss.1996.0045.

    Article  CAS  Google Scholar 

  • Largier, J.L., J.T. Hollibaugh, and S.V. Smith. 1997. Seasonally hypersaline estuaries in Mediterranean-climate regions. Estuarine, Coastal and Shelf Science 45 (6): 789–797. https://doi.org/10.1006/ecss.1997.0279.

    Article  Google Scholar 

  • Leles, S.G., G.A.O. Moser, J.L. Valentin, and G.M. Figueiredo. 2017. A Lagrangian study of plankton trophodynamics over a diel cycle in a eutrophic estuary under upwelling influence. Journal of the Marine Biological Association of the United Kingdom 98 (7): 1–12. https://doi.org/10.1017/S0025315417001333.

    Article  Google Scholar 

  • Leopold, A., C. Marchand, J. Deborde, and M. Allenbach. 2017. Water biogeochemistry of a mangrove-dominated estuary under a semi-arid climate (New Caledonia). Estuaries and Coasts 40 (3): 773–791. https://doi.org/10.1007/s12237-016-0179-9.

    Article  CAS  Google Scholar 

  • Lessa, G. C., M. Cirano, C. A. S. Tanajura and R.R. Silva. 2009. Oceanografia Física. In: Vanessa Hatje; Jailson B. de Andrade. (Org.). Baía de Todos os Santos: aspectos oceanográficos. Salvador: EDUFBA, 2009, v. 1, p. 68–119. doi: https://doi.org/10.7476/9788523209292.

  • Lessa, G.C., F.M. Santos, P.W. Souza Filho and L.C. Corrêa-Gomes. 2018a. Brazilian estuaries: A geomorphologic and oceanographic perspective. In: Brazilian estuaries: A benthic perspective. P.C. Lana and A.F. Bernardino (Eds.), pp. 1–37. doi: https://doi.org/10.1007/978-3-319-77779-5_1.

  • Lessa, G., M. Sousa, Jr, P. Mafalda, D. Gomes, C. Sampaio, C.E.P. Teixeira, J.R.L.B. De Souza and M. Zucchi. 2018b. Variabilidade intra-anual da oceanografia da baía de todos os santos: evidências de 3 anos de monitoramento. In: V. Hatje, J. Bittencourt (eds), Baia de Todos dos Santos. Chapter 5, EDUFBA, p 38.

  • Lima, G., and G. Lessa. 2002. The freshwater discharge in Todos os Santos Bay and significance to the general water ciculation. Revista Pesquisas 29 (2): 85–98. https://doi.org/10.22456/1807-9806.20271.

    Article  Google Scholar 

  • Loneragan, N.R., I.C. Potter, R.C.J. Lenanton, and N. Caputi. 1987. Influence of environmental variables on the fish fauna of the deeper waters of a large Australian estuary. Marine Biology 94 (4): 631–641. https://doi.org/10.1007/BF00431410.

    Article  Google Scholar 

  • Mantovanelli, A., E. Marone, E.T. da Silva, L.F. Lautert, M.S. Klingenfuss, V.P. Prata Jr., M.A. Noernberg, B.A. Knoppers, and R.J. Angulo. 2004. Combined tidal velocity and duration asymmetries as a determinant of water transport and residual flow in Paranaguá Bay estuary. Estuarine, Coastal and Shelf Science 59 (4): 523–537. https://doi.org/10.1016/j.ecss.2003.09.001.

    Article  CAS  Google Scholar 

  • Marengo, J.A., R.R. Torres, and L.M. Alves. 2017. Drought in Northeast Brazil — Past, present, and future. Theoretical and Applied Climatology 129 (3-4): 1189–1200. https://doi.org/10.1007/s00704-016-1840-8.

    Article  Google Scholar 

  • Meerhoff, E., F.J. Tapia, M. Sobarzo, and L. Castro. 2014. Influence of estuarine and secondary circulation on crustacean larval fluxes: A case study from a Patagonian fjord. Journal of Plankton Research 37 (1): 168–182. https://doi.org/10.1093/plankt/fbu106.

    Article  Google Scholar 

  • Nidzieko, N.J., and S.G. Monismith. 2013. Contrasting seasonal and fortnightly variations in the circulation of a seasonally inverse estuary, Elkhorn Slough, California. Estuaries and Coasts 36 (1): 1–17. https://doi.org/10.1007/s12237-012-9548-1.

    Article  Google Scholar 

  • Nunes-Vaz, R.A., G.W. Lennon, and D.G. Bowers. 1990. Physical behaviour of a large, negative or inverse estuary. Continental Shelf Research 10 (3): 277–304. https://doi.org/10.1016/0278-4343(90)90023-F.

    Article  Google Scholar 

  • O'Connor, M.I., J.F. Bruno, S.D. Gaines, B.S. Halpern, S.E. Lester, B.P. Kinlan, and J.M. Weiss. 2007. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences of the United States of America 104 (4): 1266–1271. https://doi.org/10.1073/pnas.0603422104.

    Article  CAS  Google Scholar 

  • Pawlowicz, R., B. Beardsley, and S. Lentz. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Computers and Geosciences 28 (8): 929–937.

    Article  Google Scholar 

  • Peppin, P. 1991. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Canadian Journal of Fisheries and Aquatic Sciences 48 (3): 503–518. https://doi.org/10.1139/f91-065.

    Article  Google Scholar 

  • Pereira, M.A., and G.C. Lessa. 2009. Varying patterns of water circulation in canal de Cotegipe, Baía de Todos os Santos. Revista Brasileira de Geofísica 27 (1): 103–119. https://doi.org/10.1590/S0102-261X2009000100009.

    Article  Google Scholar 

  • Ribbe, J. 2014. Hervey Bay and its estuaries. In: E. Wolanski (ed.), Estuaries of Australia in 2050 and beyond, estuaries of the world, Springer, pp. 185–201. doi: https://doi.org/10.1007/978-94-007-7019-5_11.

  • Ribeiro, C.H.A., and B. Kjerfve. 2002. Anthropogenic influence on the water quality in Guanabara Bay. Rio de Janeiro. Brazil. Regional Environmental Change 3 (1-3): 13–19. https://doi.org/10.1007/s10113-001-0037-5.

    Article  Google Scholar 

  • Santana, R.C., C.E.P. Teixeira, and G.C. Lessa. 2018. The impact of different forcing agents on the residual circulation in a tropical estuary (Baıa de Todos os Santos,Brazil). Journal of Coastal Research 34 (3): 544–558. https://doi.org/10.2112/JCOASTRES-D-17-00044.1.

    Article  Google Scholar 

  • Santos, F.M., G.C. Lessa, M. Cirano, and C.D. Lentini, 2014. Localized coastal upwelling at the Brazil current formation zone (13°S). In in: Proceedings of the 17th physics of estuaries and coastal seas (PECS) conference. Porto de Galinhas, Pernambuco, Brazil. Retrieved from: https://www.researchgate.net/publication/280925148.

  • Schettini, C.A.F., J.B. Miranda, A. Valle-Levinson, E.C. Truccolo, and E.C. Domingues. 2016. The circulation of the lower Capibaribe estuary (Brazil) and its implications for the transport of scalars. Brazilian Journal of Oceanography 64 (3): 263–276. https://doi.org/10.1590/S1679-87592016119106403.

    Article  Google Scholar 

  • Schettini, C.A.F., J.B. Miranda, A. Valle-Levinson, and E.C. Truccolo. 2017. Circulation and transport in short, low-inflow estuaries under anthropogenic stresses. Regional Studies in Marine Science 10: 52–64. https://doi.org/10.1016/j.rsma.2017.01.004.

    Article  Google Scholar 

  • Schlesinger, M.E., and N. Ramankutty. 1994. An oscillation in the global climate system of period 65-70 years. Nature 367 (6465): 723–726. https://doi.org/10.1038/367723a0.

    Article  Google Scholar 

  • Servain, J., J. N. Stricherz, D. M. Legler. 1996. TOGA pseudo-stress atlas 1985–1994. Volume 1: Tropical Atlantic. Centre ORSTOM, Plouzane, p 158.

  • Shaha, D., and Y. Cho. 2016. Salt plug formation caused by Decreased River discharge in a multi-channel estuary. Scientific Reports 6 (1): 2–11. https://doi.org/10.1038/srep27176.

    Article  CAS  Google Scholar 

  • Shchepetkin, A.F., and J.C. McWilliams. 2005. The regional ocean modeling system: A splitexplicit, free-surface, topography following coordinates ocean model. Ocean Modelling 9 (4): 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002.

    Article  Google Scholar 

  • Thevenin, M., J. Pereira, and G.C. Lessa. 2019. Shelf-break upwelling on a very narrow continental shelf adjacent to a Western boundary current formation zone. Journal of Marine Systems 195: 52–65. https://doi.org/10.1016/j.jmarsys.2019.02.008.

    Article  Google Scholar 

  • Thomson, R.E., and W.J. Emery. 2014. Data analysis Methods in physical oceanography. 3rd ed, 715. NewYork: Elsevier Inc.

    Google Scholar 

  • Valle-Levinson, A., and K. Bosley. 2003. Reversing circulation patterns in a tropical estuary. Journal of Geophysical Research 108 (C10): 3331. https://doi.org/10.1029/2003JC001786.

    Article  Google Scholar 

  • Valle-Levinson, A., and C.A.F. Schettini. 2016. Fortnightly switching of residual flow drivers in a tropical semiarid estuary. Estuarine, Coastal and Shelf Science 169: 46–55. https://doi.org/10.1016/j.ecss.2015.12.008.

    Article  Google Scholar 

  • Van Aken, H. 2008a. Variability on the water temperature in the western Wadden Sea on tidal to centennial time scales. Journal of Sea Research 60 (4): 227–234. https://doi.org/10.1016/j.seares.2008.09.001.

    Article  Google Scholar 

  • Van Aken, H. 2008b. Variability on the salinity in the western Wadden Sea on tidal to centennial time scales. Journal of Sea Research 59 (3): 121–132. https://doi.org/10.1016/j.seares.2007.11.001.

    Article  CAS  Google Scholar 

  • Wolanski, E. 1986. An evaporation-driven salinity maximum zone in Australian tropical estuaries. Estuarine, Coastal and Shelf Science 22 (4): 41–24. https://doi.org/10.1016/0272-7714(86)90065-X.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme C. Lessa.

Additional information

Communicated by Arnoldo Valle-Levinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lessa, G.C., Mariani, R. & Fonseca, L. Variability of the Thermohaline Field in a Large Tropical, Well-Mixed Estuary: the Influence of an Extreme Draught Event. Estuaries and Coasts 42, 2020–2037 (2019). https://doi.org/10.1007/s12237-019-00641-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00641-y

Keywords

Navigation