Shoreline Retraction and the Opening of a New Inlet: Implications on Estuarine Processes

Abstract

The dynamics of estuarine systems is sensitive to changes in its forcing conditions, including the morphology of its inlets. Coastline retraction, which may be induced by climate change, can result in modifications of estuarine inlet morphology. Through the use of a validated numerical model, we evaluate the effects of the opening of a new inlet on a tide-dominated estuary (Caravelas estuary, Brazil). During the last decades, shoreline retraction and the breach of an internal drainage channel led to the formation of a new inlet that became the main estuarine channel. The morphological changes of the estuary resulted in changes to its estuarine processes, including the general increase in the influence of the tide on the system and changes to its asymmetry. Internal channels that interconnect adjacent estuaries present great changes caused by the morphological alterations, not only in the magnitude of the processes but also in the resulting net transport direction. The increase in the water flow caused by the opening of the channel leads to an increase in the amount of water and materials carried toward the estuary. The changes presented here for the Caravelas estuarine system and the possible implications for the functioning of such systems demonstrate the importance of evaluating morphological aspects in relation to their use and management.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Aldridge, J.N. 1997. Hydrodynamic model predictions of tidal asymmetry and observed sediment transport paths in Morecambe Bay. Estuarine, Coastal and Shelf Science 44 (1): 39–56.

    Article  Google Scholar 

  2. Andrade, A.C.S., and J.M.L. Dominguez. 2002. Informações Geológico-Geomorfológicas como Subsídios à Análise Ambiental: o Exemplo da Planície Costeira de Caravelas—Bahia. Boletim Paranaense de Geociências 51: 9–17.

    Article  Google Scholar 

  3. Andrade, A.C.S., J.M.L. Dominguez, L. Martin, and A.C.S.P. Bittencourt. 2003. Quaternary evolution of the Caravelas Strandplain—Southern Bahia State—Brazil. Anais da Academia Brasileira de Ciências 75 (3): 357–382.

    Article  Google Scholar 

  4. Andutta, F.P., L.B. Miranda, C.A.F. Schettini, E. Siegle, M.P. Silva, V.I. Massaki, and F.M. Chagas. 2013. Temporal variations of temperature, salinity and circulation in the Peruípe river estuary (Nova Viçosa, BA). Continental Shelf Research 70: 36–45.

    Article  Google Scholar 

  5. Aubrey, D.G., and P.E. Speer. 1983. A study of non-linear tidal propagation in shallow inlet/estuarine systems. Part I: observations. Estuarine, Coastal and Shelf Science 21: 185–205.

    Article  Google Scholar 

  6. Azevedo, I.F., B.C. Carvalho, and J.V. Guerra. 2016. Utilização de imagens de satélite Landsat para análise da variabilidade morfológica de pontais arenosos na planície costeira de Caravelas (NE do Brasil). Revista Brasileira de Geomorfologia 17 (4): 695–709. https://doi.org/10.20502/rbg.v17i4.843.

    Article  Google Scholar 

  7. Bruun, P., and F. Gerritsen. 1960. Stability of coastal inlets. Amsterdam: North Holland 123 p.

    Google Scholar 

  8. Chaves, R.R. 1999. Variabilidade da precipitação na região Sul do Nordeste e sua associação com padrões atmosféricos. São José dos Campos: Dissertação de Mestrado, Instituto Nacional de Pesquisas Espaciais 159p.

    Google Scholar 

  9. Codiga, D.L., 2011. Unified tidal analysis and prediction using the UTide Matlab functions. Technical Report 2011-01. Graduate School of Oceanography, University of Rhode Island, Narragansett, RI. 59 pp.

  10. Davis, R.A. 1994. Barrier island systems—a geologic overview. In Geology of Holocene Barrier Island Systems, ed. R.A. Davis, 1–46.

    Google Scholar 

  11. de Miranda, E.E. 2005. Brasil em Relevo. Campinas: Embrapa Monitoramento por Satélite Available at: http://www.relevobr.cnpm.embrapa.br.

    Google Scholar 

  12. de Swart, H.E., and J.T.F. Zimmerman. 2009. Morphodynamics of tidal inlet systems. Annual Review of Fluid Mechanics 41 (1): 203–229.

    Article  Google Scholar 

  13. Deltares. 2011. Delft3D-FLOW user manual. Netherlands: Deltares.

  14. Dominguez, J.M.L. 1987. Quaternary sea-level changes and the depositional architecture of beach-ridge strandplains along the coast of Brazil. Ph.D. Dissertation, Florida/USA: University of Miami. 288p.

  15. Dominguez, J.M.L., A.C.S.P. Bittencourt, and L. Martin. 1992. Controls on quaternary coastal evolution of the east-northeastern coast of Brazil: roles of sea-level history, trade winds and climate. Sedimentary Geology 80 (3-4): 213–232.

    Article  Google Scholar 

  16. Dronkers, J. 1986. Tidal asymmetry and estuarine morphology. Netherlands Journal of Sea Research 20 (2/3): 117–131.

    Article  Google Scholar 

  17. Dyer, K.R. 1997. Estuaries: a physical introduction. 2nd ed. New York: John Wiley & Sons 195 p.

    Google Scholar 

  18. Dyer, K.R., W.K. Gong, and J.E. Ong. 1992. The cross sectional salt balance in a tropical estuary during a lunar tide and a discharge event. Estuarine, Coastal and Shelf Science 34 (6): 579–591.

    CAS  Article  Google Scholar 

  19. Falcão, L.C., and A. Ayres Neto. 2010. Parâmetros físicos de sedimentos marinhos superficiais na região costeira de Caravelas, sul da Bahia. Revista Brasileira de Geofísica 28 (2): 279–289.

    Article  Google Scholar 

  20. Filgueira, R., T. Guyondet, L.A. Comeau, and J. Grant. 2013. Storm-induced changes in coastal geomorphology control estuarine secondary productivity. Earth’s Future 2 (1): 1–6. https://doi.org/10.1002/2013EF000145.

    Article  Google Scholar 

  21. FitzGerald, D.M. 1988. Shoreline erosional-depositional processes associated with tidal inlets. In Estuarine cohesive sediment dynamics. Lecture notes on coastal estuarine studies, ed. A.J. Mehta, 186–225.

    Google Scholar 

  22. FitzGerald, D.M. 1996. Geomorphic variability and morphologic and sedimentologic controls on tidal inlets. Journal of Coastal Research, SI 23: 47–71.

    Google Scholar 

  23. FitzGerald, D.M.; Kraus, N.C.; Hands, E.B. 2000. Natural mechanisms of sediment bypassing at tidal inlets. US Army Corps of Engineers, CHETN-IV-30, 10 pp.

  24. Friedrichs, C.T., and D.G. Aubrey. 1988. Non-linear tidal distortions in shallow well mixed estuaries: a synthesis. Estuarine, Coastal and Shelf Science 27 (5): 521–545.

    Article  Google Scholar 

  25. Gobler, C.J., L.A. Cullison, F. Koch, T.M. Harder, and J.W. Krause. 2005. Influence of freshwater flow, ocean exchange, and season cycles on phytoplankton-nutrient dynamics in a temporarily open estuary. Estuarine, Coastal and Shelf Science 65 (1-2): 275–288.

    Article  Google Scholar 

  26. Goodwin, P. 1996. Predicting the stability of tidal inlets for wetland and estuary management. Journal of Coastal Research, SI 23: 83–101.

    Google Scholar 

  27. Guyondet, T., and V.G. Koutitonsky. 2007. Tidal and residual circulations in coupled restricted and leaky lagoons. Estuarine, Coastal and Shelf Science 77 (3): 396–408.

    Article  Google Scholar 

  28. Hume, T.M. 1991. Empirical stability relationships for estuarine waterways and equations for stable channel design. Journal of Coastal Research 7 (4): 1097–1111.

    Google Scholar 

  29. Hume, T.M., and C.E. Herdendorf. 1992. Factors controlling tidal inlet characteristics on low drift coasts. Journal of Coastal Research 8 (2): 355–375.

    Google Scholar 

  30. Leão, Z.M.A.N., and J.M.L. Dominguez. 2000. Tropical coast of Brazil. Marine Pollution Bulletin 41 (1–6): 112–122.

    Article  Google Scholar 

  31. Lessa, G.C., and M. Cirano. 2006. On the circulation of a coastal channel within the Abrolhos coral-reef system, southern Bahia, Brazil. Journal of Coastal Research 39 (SI): 450–453.

    Google Scholar 

  32. Livingston, R.J. 2007. Phytoplankton bloom effects on a gulf estuary: water quality changes and biological response. Ecological Applications, 17S: 110–128.

  33. Mann, K.H., and J.R.N. Lazier. 1991. Dynamics of marine ecosystems. Boston: Blackwell Scientific Publications 466pp.

    Google Scholar 

  34. Martin, L.; Suguio, K.; Flexor, J-M.; Dominguez, J.M.L. 1984. Evolução da planície costeira do rio Paraíba do Sul (RJ) durante o Quaternário: influências das flutuações do nível do mar. In Congresso Brasileiro de Geologia 33. Anais..., SBG 1: 84–97.

  35. Miranda, L.B., B.M. Castro, and B. Kjerfve. 2012. Princípios de Oceanografia Física de Estuários. São Paulo: Editora da Universidade de São Paulo, Coleção Acadêmica 426 p.

    Google Scholar 

  36. Nichols, M.M., and R.B. Biggs. 1985. Estuaries. In Coastal sedimentary environments, ed. R.A. Davis, 77–186. New York: Springer Verlag.

    Google Scholar 

  37. O’Brien, M.P. 1931. Estuary tidal prisms related to entrance areas. Civil Engineering 1: 738–739.

    Google Scholar 

  38. Pereira, M.D., E. Siegle, L.B. Miranda, and C.A.F. Schettini. 2010. Hidrodinâmica e transporte de material particulado em suspensão sazonal em um estuário dominado por maré: estuário de Caravelas (BA). Revista Brasileira de Geofísica 28 (3): 427–444.

    Article  Google Scholar 

  39. Philips, E.J., S. Badylak, J. Hart, H. Haunert, J. Lockwood, K. O’Donnell, D. Sun, P. Viveros, and M. Yilmaz. 2012. Climatic influences on autochthonous and allochthonous phytoplankton blooms in a subtropical estuary, St. Lucie Estuary, Florida, USA. Estuaries and Coasts 35 (1): 335–352.

    Article  Google Scholar 

  40. Pianca, C. 2009. Dinâmica de bancos e pontais arenosos associados à desembocadura do estuário de Caravelas, BA. Dissertação de Mestrado. Universidade de São Paulo. https://doi.org/10.11606/D.21.2009.tde-30042010-103318.

  41. Pianca, C., P.L.F. Mazzini, and E. Siegle. 2010. Brazilian offshore wave climate based on NWW3 reanalysis. Brazilian Journal of Oceanography 58 (1): 53–70. https://doi.org/10.1590/S1679-87592010000100006.

    Article  Google Scholar 

  42. Santos, L.A.S. 2010. Modelagem numérica da dinâmica do sistema estuarino Caravelas—Peruíbe, BA. MSc Thesis. Universidade de São Paulo. https://doi.org/10.11606/D.21.2010.tde-27072011-155717.

  43. Schettini, C.A.F., and L.B. Miranda. 2010. Circulation and suspended matter transport in a tidally dominated estuary: Caravelas estuary, Bahia, Brazil. Brazilian Journal of Oceanography 58 (1): 1–11.

    Article  Google Scholar 

  44. Schettini, C.A.F., M.D. Pereira, E. Siegle, L.B. Miranda, and M.P. Silva. 2013. Residual fluxes of suspended sediment in a tidally dominated tropical estuary. Continental Shelf Research 70: 27–35.

    Article  Google Scholar 

  45. Schubel, J.R.; Carter, H.H. 1984. The estuary as a filter for fine grained suspended sediment. In The estuary as a filter, ed. V. S. Kennedy, 81–106.

  46. Siegle, E., and M.B. Costa. 2017. Nearshore wave power increase on reef-shaped coasts due to sea-level rise. Earth’s Future 5 (10): 1054–1065. https://doi.org/10.1002/2017EF000624.

    Article  Google Scholar 

  47. Sousa, S.H.M., P.G.C. Amaral, V. Martins, R.C.L. Figueira, E. Siegle, P.A.L. Ferreira, I.S. Silva, E. Shinagawa, A. Salaroli, C.A.F. Schettini, J. Santa-Cruz, and M.M. Mahiques. 2014. Environmental evolution of the Caravelas estuary (northeastern Brazilian coast, 17° S, 39° W) based on multiple proxies in a sedimentary record of the last century. Journal of Coastal Research 30: 474–486.

    Google Scholar 

  48. Sousa, S.H.M., P.A. Ferreira, M.V. Martins, E. Siegle, P.G. Amaral, R.C.L. Figueira, C. Yamashita, A.R. Rodrigues, and M.M. Mahiques. 2016. Spatial sediment variability in a tropical tide dominated estuary: sources and drivers. Journal of South American Earth Sciences 72: 115–125.

    CAS  Article  Google Scholar 

  49. Speer, P.E., and D.G. Aubrey. 1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems part II: theory. Estuarine Coastal and Shelf Science 21 (2): 207–224. https://doi.org/10.1016/0272-7714(85)90097-6.

    Article  Google Scholar 

  50. Technical Report HM RT-007-08. 2008. Estudo Ambiental – Dragagem de acesso ao canal do Tomba, Caravelas/BA - Vol. 2. 293 pp.

  51. Teixeira, C.E.P., G.C. Lessa, M. Cirano, and C.A. Lentini. 2013. The inner-shelf circulation on the Abrolhos Bank, 18° S, Brazil. Continental Shelf Research 70: 13–26.

    Article  Google Scholar 

  52. Van Rijn, L.C., D.J.R. Walstra, B. Grasmeijer, J. Sutherland, S. Pan, and J.P. Sierra. 2003. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coastal Engineering 47 (3): 295–327.

  53. Walton, T.L.; Adams, W.D. 1976. Capacity of inlet outers bars to store sand. Proceedings, 15 thconference on coastal and ocean engineering (ASCE). pp. 1919–1937.

  54. Wolanski, E., L.A. Boorman, L. Chícharo, E. Langlois-Salious, R. Lara, A.J. Plater, R.J. Uncles, and M. Zalewski. 2004. Ecohydrology as a tool for sustainable management of estuaries and coastal waters. Wetlands Ecology and Management 12 (4): 235–276.

Download references

Funding

This study was funded by Fundação de Apoio a Pesquisa do Estado de São Paulo through the project “Avaliação da disponibilidade e enriquecimento antrópico de metais, arsênio e hidrocarbonetos em sedimentos marinhos no estuário de Caravelas (Sul da Bahia)” (FAPESP No. 2013/00102-8) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the Pro-Abrolhos Project (Institutos do Milênio—CNPq 420219/2005-6) and project “Avaliação da qualidade ambiental no estuário do rio Caravelas, BA, nos últimos 150 anos, segundo uma visão de multi-indicadores” (CNPq 477235/2009-3). Eduardo Siegle, Silvia H.M. Sousa, Rubens C.L. Figueira and Carlos A.F. Schettini are CNPq research fellows. The applied numerical model is the Delft 3D open source version, available from Deltares (https://oss.deltares.nl/web/delft3d).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eduardo Siegle.

Additional information

Highlights

• Shoreline retraction at a reef-shaped coast results in the opening of a new estuarine inlet.

• The gradual widening of a new inlet results in changes in estuarine processes.

• Results indicate changes in magnitudes of the processes and in resulting net transport direction.

Communicated by Arnoldo Valle-Levinson

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siegle, E., Couceiro, M.A.A., Sousa, S.H.M. et al. Shoreline Retraction and the Opening of a New Inlet: Implications on Estuarine Processes. Estuaries and Coasts 42, 2004–2019 (2019). https://doi.org/10.1007/s12237-019-00635-w

Download citation

Keywords

  • Estuarine processes
  • Inlets
  • Morphological change
  • Caravelas estuary