Skip to main content
Log in

Interactive Effects of Seagrass and the Microphytobenthos on Sediment Suspension Within Shallow Coastal Bays

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The suspension and transport of sediments in coastal environments influences water column clarity, and also affects the growth of photosynthetic organisms. The presence of benthic vegetation, such as seagrass, can attenuate wave and tidal energy, thereby altering suspended sediment concentrations (SSC) and microphytobenthos (MPB) biomass that secrete biogenic compounds that can increase sediment cohesion. The dual role of seagrass and MPB in altering the seasonal critical bed shear stress, τc, necessary to suspend sediment was studied within a Zostera marina seagrass meadow and an adjacent unvegetated region within a shallow coastal bay in Virginia, USA. Hydrodynamics and MPB biomass were recorded seasonally to determine the critical bed shear stress and subsequent SSC response. Results show that seagrasses reduced mean currents and waves, thus lowering SSC within the meadow. In addition, seagrass created favorable conditions for MPB growth, with annual mean sediment carbohydrate concentrations, a proxy for MPB activity, to be double within the seagrass compared to the unvegetated site. Sediment carbohydrate concentrations within the seagrass bed were higher during winter than summer due to enhanced light penetration, which coincided with an increase in τc to 0.056 Pa compared to 0.024 Pa. τc was found to be 0.021 Pa at the unvegetated site, with bed shear exceeding this threshold > 85% of the time. These findings suggest both MPB and seagrass play an important and interactive role in regulating seasonal sediment resuspension, and constant reworking of the bed sediments in high shear regions prevented the establishment of MPB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams, M.P., R.K. Hovey, M.R. Hipsey, L.C. Bruce, M. Ghisalberti, R.J. Lowe, R.K. Gruber, L. Ruiz-Montoya, P.S. Maxwell, and D.P. Callaghan. 2016. Feedback between sediment and light for seagrass: where is it important? Limnology and Oceanography.

  • Amos, C., A. Bergamasco, G. Umgiesser, S. Cappucci, D. Cloutier, L. DeNat, M. Flindt, M. Bonardi, and S. Cristante. 2004. The stability of tidal flats in Venice Lagoon—the results of in-situ measurements using two benthic, annular flumes. Journal of Marine Systems 51 (1-4): 211–241.

    Google Scholar 

  • Andersen, T. 2001. Seasonal variation in erodibility of two temperate, microtidal mudflats. Estuarine, Coastal and Shelf Science 53 (1): 1–12.

    Google Scholar 

  • Austen, I., T.J. Andersen, and K. Edelvang. 1999. The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mudflat, the Danish Wadden Sea. Estuarine, Coastal and Shelf Science 49 (1): 99–111.

    CAS  Google Scholar 

  • Besterman, A.F., and M.L. Pace. 2018. Do macroalgal mats impact microphytobenthos on mudflats? Evidence from a meta-analysis, comparative survey, and large-scale manipulation. Estuaries and Coasts 1–13.

  • Black, K.S., and D.M. Paterson. 1997. Measurement of the erosion potential of cohesive marine sediments: a review of current in situ technology. Journal of Marine Environmental Engineering 4: 43–83.

    Google Scholar 

  • Black, K., T. Tolhurst, D. Paterson, and S. Hagerthey. 2002. Working with natural cohesive sediments. Journal of Hydraulic Engineering 128 (1): 2–8.

    Google Scholar 

  • Bouma, T.J., M. Friedrichs, P. Klaassen, B.K. van Wesenbeeck, F.G. Brun, S. Temmerman, M.M. van Katwijk, G. Graf, and P.M.J. Herman. 2009. Effects of shoot stiffness, shoot size and current velocity on scouring sediment from around seedlings and propagules. Marine Ecology Progress Series 388: 293–297.

    Google Scholar 

  • Bradley, K., and C. Houser. 2009. Relative velocity of seagrass blades: implications for wave attenuation in low-energy environments. Journal of Geophysical Research Earth Surfaces 114: 1–13.

    Google Scholar 

  • Cahoon, L.B. 2014. The role of benthic microalgae in neritic ecosystems. Oceanography and Marine Biology: An Annual Review 37: 55–94 CRC Press.

    Google Scholar 

  • Carpentier, A., S. Como, C. Dupuy, C. Lefrançois, and E. Feunteun. 2014. Feeding ecology of Liza spp. in a tidal flat: evidence of the importance of primary production (biofilm) and associated meiofauna. Journal of Sea Research 92: 86–91.

    Google Scholar 

  • Carr, J., P. D'Odorico, K. McGlathery, and P. Wiberg. 2010. Stability and bistability of seagrass ecosystems in shallow coastal lagoons: role of feedbacks with sediment resuspension and light attenuation. Journal of Geophysical Research: Biogeosciences 2005–2012: 115.

    Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.

    CAS  Google Scholar 

  • Colijn, F., and V.N. De Jonge. 1984. Primary production of microphytobenthos in the Ems-Dollard Estuary. Marine Ecology Progress Series 14: 185–196.

    Google Scholar 

  • De Boer, W. 2007. Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591 (1): 5–24.

    Google Scholar 

  • Decho, A.W. 2000. Microbial biofilms in intertidal systems: an overview. Continental Shelf Research 20 (10-11): 1257–1273.

    Google Scholar 

  • Donadi, S., J. Westra, E.J. Weerman, T. van der Heide, E.M. van der Zee, J. van de Koppel, H. Olff, T. Piersma, H.W. van der Veer, and B.K. Eriksson. 2013. Non-trophic interactions control benthic producers on intertidal flats. Ecosystems 16 (7): 1325–1335.

    CAS  Google Scholar 

  • Douglass, J.G., J.E. Duffy, and E.A. Canuel. 2011. Food web structure in a Chesapeake Bay eelgrass bed as determined through gut contents and 13C and 15N isotope analysis. Estuaries and Coasts 34 (4): 701–711.

    CAS  Google Scholar 

  • Dubois, M., K.A. Gilles, J.K. Hamilton, P.T. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28 (3): 350–356.

    CAS  Google Scholar 

  • Eckman, J.E., A.R. Nowell, and P.A. Jumars. 1981. Sediment destabilization by animal tubes. Journal of Marine Research 39: 361–373.

    Google Scholar 

  • Fagherazzi, S., and P. Wiberg. 2009. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins. Journal of Geophysical Research 114.

  • Fonseca, M. 1989. Sediment stabilization by Halophila decipiens in comparison to other seagrasses. Estuarine, Coastal and Shelf Science 29 (5): 501–507.

    Google Scholar 

  • Friend, P., P. Ciavola, S. Cappucci, and R. Santos. 2003a. Bio-dependent bed parameters as a proxy tool for sediment stability in mixed habitat intertidal areas. Continental Shelf Research 23 (17-19): 1899–1917.

    Google Scholar 

  • Friend, P., M. Collins, and P. Holligan. 2003b. Day–night variation of intertidal flat sediment properties in relation to sediment stability. Estuarine, Coastal and Shelf Science 58 (3): 663–675.

    CAS  Google Scholar 

  • Gacia, E., T. Granata, and C. Duarte. 1999. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquatic Botany 65 (1-4): 255–268.

    Google Scholar 

  • Ganthy, F., A. Sottolichio, and R. Verney. 2013. Seasonal modification of tidal flat sediment dynamics by seagrass meadows of Zostera noltii (Bassin d'Arcachon, France). Journal of Marine Systems 109: S233–S240.

    Google Scholar 

  • García-Robledo, E., A. Corzo, S. Papaspyrou, and E.P. Morris. 2012. Photosynthetic activity and community shifts of microphytobenthos covered by green macroalgae. Environmental Microbiology Reports 4 (3): 316–325.

    Google Scholar 

  • Gruber, R.K., and W.M. Kemp. 2010. Feedback effects in a coastal canopy-forming submersed plant bed. Limnology and Oceanography 55 (6): 2285–2298.

    CAS  Google Scholar 

  • Hansen, J.C.R., and M.A. Reidenbach. 2012. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Marine Ecology Progress Series 448: 271–287.

    Google Scholar 

  • Hansen, J.C., and M.A. Reidenbach. 2013. Seasonal growth and senescence of a Zostera marina seagrass meadow alters wave-dominated flow and sediment suspension within a coastal bay. Estuaries and Coasts 36 (6): 1099–1114.

    CAS  Google Scholar 

  • Hansen, J.C., and M.A. Reidenbach. 2017. Turbulent mixing and fluid transport within Florida Bay seagrass meadows. Advances in Water Resources 108: 205–215.

    Google Scholar 

  • Hardison, A., E. Canuel, I. Anderson, C. Tobias, B. Veuger, and M. Waters. 2013. Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments. Biogeosciences 10: 5571.

    Google Scholar 

  • Houwing, E.-J. 1999. Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden Sea coast. Estuarine, Coastal and Shelf Science 49 (4): 545–555.

    Google Scholar 

  • Kim, S.C., C.T. Friedrichs, J.P.Y. Maa, and L.D. Wright. 2000. Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. Journal of Hydraulic Engineering 126 (6): 399–406.

    Google Scholar 

  • Kimiaghalam, N., S.P. Clark, and H. Ahmari. 2016. An experimental study on the effects of physical, mechanical, and electrochemical properties of natural cohesive soils on critical shear stress and erosion rate. International Journal of Sediment Research 31 (1): 1–15.

    Google Scholar 

  • Kundu, P. 1990. Fluid mechanics. New York: Academic Press.

    Google Scholar 

  • Kuwae, T., E. Miyoshi, S. Hosokawa, K. Ichimi, J. Hosoya, T. Amano, T. Moriya, M. Kondoh, R.C. Ydenberg, and R.W. Elner. 2012. Variable and complex food web structures revealed by exploring missing trophic links between birds and biofilm. Ecology Letters 15 (4): 347–356.

    Google Scholar 

  • Lawson, S.E., P.L. Wiberg, K.J. McGlatherty, and D.C. Fugate. 2007. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon. Estuaries and Coasts 30 (1): 102–112.

    Google Scholar 

  • Lawson, S., K. McGlathery, and P. Wiberg. 2012. Enhancement of sediment suspension and nutrient flux by benthic macrophytes at low biomass. Marine Ecology Progress Series 448: 259–270.

    Google Scholar 

  • Long, M.H., J.E. Rheuban, P. Berg, and J.C. Zieman. 2012. A comparison and correction of light intensity loggers to photosynthetically active radiation sensors. Limnology and Oceanography: Methods 10: 416–424.

    Google Scholar 

  • Lorenzen, C.J. 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography 12 (2): 343–346.

    CAS  Google Scholar 

  • Lucas, C.H., J. Widdows, and L. Wall. 2003. Relating spatial and temporal variability in sediment chlorophylla and carbohydrate distribution with erodibility of a tidal flat. Estuaries 26 (4): 885–893.

    Google Scholar 

  • MacIntyre, H.L., R.J. Geider, and D.C. Miller. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19 (2): 186–201.

    Google Scholar 

  • Mariotti, G., and S. Fagherazzi. 2012. Modeling the effect of tides and waves on benthic biofilms. Journal of Geophysical Research: Biogeosciences 117 (G4).

  • McGlathery, K., L. Reynolds, L. Cole, R. Orth, S. Marion, and A. Schwarzschild. 2012. Recovery trajectories during state change from bare sediment to eelgrass dominance. Marine Ecology Progress Series 448: 209–221.

    Google Scholar 

  • McGlathery, K.J., M.A. Reidenbach, P. D'Odorico, S. Fagherazzi, M.L. Pace, and J.H. Porter. 2013. Nonlinear dynamics and alternative stable states in shallow coastal systems. Oceanography 26 (3): 220–231.

    Google Scholar 

  • Mehta, A. 1988. Laboratory studies on cohesive sediment deposition and erosion. In Physical processes in estuaries, 427-445. Springer.

  • Miller, D.C., R.J. Geider, and H.L. MacIntyre. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19: 202–212.

    Google Scholar 

  • Mitchener, H., and H. Torfs. 1996. Erosion of mud/sand mixtures. Coastal Engineering 29 (1-2): 1–25.

    Google Scholar 

  • Nielsen, P. 1992. Coastal bottom boundary layers and sediment transport. World Scientific.

  • Orth, R.J., and K.J. McGlathery. 2012. INTRODUCTION: Eelgrass recovery in the coastal bays of the Virginia Coast Reserve, USA. Marine Ecology Progress Series 448: 173–176.

    Google Scholar 

  • Orth, R.J., T.J. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, and S. Olyarnik. 2006a. A global crisis for seagrass ecosystems. Bioscience 56 (12): 987–996.

    Google Scholar 

  • Orth, R.J., M.L. Luckenbach, S.R. Marion, K.A. Moore, and D.J. Wilcox. 2006b. Seagrass recovery in the Delmarva coastal bays, USA. Aquatic Botany 84 (1): 26–36.

    Google Scholar 

  • Orth, R., K. Moore, S. Marion, D. Wilcox, and D. Parrish. 2012. Seed addition facilitates eelgrass recovery in a coastal bay system. Marine Ecology Progress Series 448: 177–195.

    Google Scholar 

  • Orvain, F., K. Guizien, S. Lefebvre, M. Bréret, and C. Dupuy. 2014. Relevance of macrozoobenthic grazers to understand the dynamic behaviour of sediment erodibility and microphytobenthos resuspension in sunny summer conditions. Journal of Sea Research 92: 46–55.

    Google Scholar 

  • Paterson, D. 1994. Biological mediation of sediment erodibility: ecology and physical dynamics. Cohesive Sediments.

  • Paterson, D., T. Tolhurst, J. Kelly, C. Honeywill, E. De Deckere, V. Huet, S. Shayler, K. Black, J. De Brouwer, and I. Davidson. 2000. Variations in sediment properties, Skeffling mudflat, Humber Estuary, UK. Continental Shelf Research 20 (10-11): 1373–1396.

    Google Scholar 

  • Patterson, M.R., K.P. Sebens, and R.R. Olson. 1991. In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnology and Oceanography 36 (5): 936–948.

    CAS  Google Scholar 

  • Peterson, C.H., R.A. Luettich, F. Micheli, and G.A. Skilleter. 2004. Attenuation of water flow inside seagrass canopies of differing structure. Marine Ecology Progress Series 268: 81–92.

    Google Scholar 

  • Pope, N.D., J. Widdows, and M.D. Brinsley. 2006. Estimation of bed shear stress using the turbulent kinetic energy approach: a comparison of annular flume and field data. Continental Shelf Research 26 (8): 959–970.

    Google Scholar 

  • Pratt, D.R., C.A. Pilditch, A.M. Lohrer, S.F. Thrush, and C. Kraan. 2015. Spatial distributions of grazing activity and microphytobenthos reveal scale-dependent relationships across a sedimentary gradient. Estuaries and Coasts 38 (3): 722–734.

    CAS  Google Scholar 

  • Reidenbach, M.A., and E.L. Thomas. 2018. Influence of the seagrass, Zostera marina, on wave attenuation and bed shear stress within a shallow coastal bay. Frontiers in Marine Science 5: 397.

    Google Scholar 

  • Reidenbach, M.A., S.G. Monismith, J.R. Koseff, G. Yahel, and A. Genin. 2006. Boundary layer turbulence and flow structure over a fringing coral reef. Limnology and Oceanography 51 (5): 1956–1968.

    Google Scholar 

  • Safak, I., P. Wiberg, D. Richardson, and M. Kurum. 2015. Controls on residence time and exchange in a system of shallow coastal bays. Continental Shelf Research 97: 7–20.

    Google Scholar 

  • Salehi, M., and K. Strom. 2012. Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations. Continental Shelf Research 47: 78–92.

    Google Scholar 

  • Stapleton, K.R., and D.A. Huntley. 1995. Seabed stress determinations using the inertial dissipation method and the turbulent kinetic energy method. Earth Surface Processes and Landforms 20 (9): 807–815.

    Google Scholar 

  • Storlazzi, C., M. Field, and M. Bothner. 2011. The use (and misuse) of sediment traps in coral reef environments: theory, observations, and suggested protocols. Coral Reefs 30 (1): 23–38.

    Google Scholar 

  • Teisson, C., M. Ockenden, P. Le Hir, C. Kranenburg, and L. Hamm. 1993. Cohesive sediment transport processes. Coastal Engineering 21 (1-3): 129–162.

    Google Scholar 

  • Tennekes, H., and J. Lumley. 1972. A first course in turbulence. Cambrindge: The MIT Press.

    Google Scholar 

  • Thomsen, M.S., K.J. McGlathery, and A.C. Tyler. 2006. Macroalgal distribution patterns in a shallow, soft-bottom lagoon, with emphasis on the nonnative Gracilaria vermiculophylla and Codium fragile. Estuaries and Coasts 29 (3): 465–473.

    CAS  Google Scholar 

  • Underwood, G.J., and D.M. Paterson. 1993. Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn Estuary. Journal of the Marine Biological Association of the United Kingdom 73 (4): 871–887.

    Google Scholar 

  • Underwood, G.J.C., D.M. Paterson, and R.J. Parkes. 1995. The measurement of microbial carbohydrate exoploymers from intertidal sediments. Limnology and Oceanography 40 (7): 1243–1253.

    CAS  Google Scholar 

  • Van Duren, L.A., P.M. Herman, A.J. Sandee, and C.H. Heip. 2006. Effects of mussel filtering activity on boundary layer structure. Journal of Sea Research 55 (1): 3–14.

    Google Scholar 

  • Van Katwijk, M., A. Bos, D. Hermus, and W. Suykerbuyk. 2010. Sediment modification by seagrass beds: muddification and sandification induced by plant cover and environmental conditions. Estuarine, Coastal and Shelf Science 89 (2): 175–181.

    Google Scholar 

  • Verney, R., J.-C. Brun-Cottan, R. Lafite, J. Deloffre, and J. Taylor. 2006. Tidally-induced shear stress variability above intertidal mudflats in the macrotidal Seine Estuary. Estuaries and Coasts 29 (4): 653–664.

    Google Scholar 

  • Weerman, E.J., J. Van de Koppel, M.B. Eppinga, F. Montserrat, Q.-X. Liu, and P.M. Herman. 2010. Spatial self-organization on intertidal mudflats through biophysical stress divergence. The American Naturalist 176 (1): E15–E32.

    Google Scholar 

  • Wiberg, P.L., and C.R. Sherwood. 2008. Calculating wave-generated bottom orbital velocities from surface-wave parameters. Computers and Geosciences 34: 1243–1262.

    Google Scholar 

  • Wiberg, P., and J.D. Smith. 1983. A comparison of field data and theoretical models for wave current interactions at the bed on the continental shelf. Continental Shelf Research 2 (2-3): 147–162.

    Google Scholar 

  • Wiberg, P.L., and J.D. Smith. 1987. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resources Research 23 (8): 1471–1480.

    Google Scholar 

  • Widdows, J., N.D. Pope, M.D. Brinsley, H. Asmus, and R.M. Asmus. 2008. Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension. Marine Ecology Progress Series 358: 125–136.

    Google Scholar 

  • Yallop, M.L., B. de Winder, D.M. Paterson, and L.J. Stal. 1994. Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuarine, Coastal and Shelf Science 39 (6): 565–582.

    Google Scholar 

Download references

Acknowledgments

We thank A. Schwarzschild, C. Buck, and D. Boyd for field assistance. This research was funded by the National Science Foundation (NSF-DEB 1237733 and NSF-DEB 1832221) to the Virginia Coast Reserve Long Term Ecological Research program and by a CAREER grant (NSF-OCE 1151314) to MAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Reidenbach.

Additional information

Communicated by Just Cebrian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reidenbach, M.A., Timmerman, R. Interactive Effects of Seagrass and the Microphytobenthos on Sediment Suspension Within Shallow Coastal Bays. Estuaries and Coasts 42, 2038–2053 (2019). https://doi.org/10.1007/s12237-019-00627-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00627-w

Keywords

Navigation