Experimental Saltwater Intrusion Drives Rapid Soil Elevation and Carbon Loss in Freshwater and Brackish Everglades Marshes

Abstract

Increasing rates of sea-level rise (SLR) threaten to submerge coastal wetlands unless they increase soil elevation at similar pace, often by storing soil organic carbon (OC). Coastal wetlands face increasing salinity, marine-derived nutrients, and inundation depths from increasing rates of SLR. To quantify the effects of SLR on soil OC stocks and fluxes and elevation change, we conducted two mesocosm experiments using the foundation species sawgrass (Cladium jamaicense) and organic soils from freshwater and brackish Florida Everglades marshes for 1 year. In freshwater mesocosms, we compared ambient and elevated salinity (fresh, 9 ppt) and phosphorus (ambient, + 1 g P m−2 year−1) treatments with a 2 × 2 factorial design. Salinity addition reduced root biomass (48%), driving 2.8 ± 0.3 cm year−1 of elevation loss, while soil elevation was maintained in freshwater conditions. Added P increased root productivity (134%) but also increased breakdown rates (k) of roots (31%) and leaves (42%) with no effect on root biomass or soil elevation. In brackish mesocosms, we compared ambient and elevated salinity (10, 19 ppt) and inundated and exposed conditions (water level 5-cm below and 4-cm above soil). Elevated salinity decreased root productivity (70%) and root biomass (37%) and increased k in litter (33%) and surface roots (11%), whereas inundation decreased subsurface root k (10%). All brackish marshes lost elevation at similar rates (0.6 ± 0.2 cm year−1). In conclusion, saltwater intrusion in freshwater and brackish wetlands may reduce net OC storage and increase vulnerability to SLR despite inundation or marine P supplies.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ardón, M., A.M. Helton, and E.S. Bernhardt. 2016. Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands. Biogeochemistry 127 (2–3): 411–426.

    Article  CAS  Google Scholar 

  2. Baustian, J.J., I.A. Mendelssohn, and M.W. Hester. 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18 (11): 3377–3382.

    Article  Google Scholar 

  3. Benfield, E.F. 2006. Decomposition of leaf material. In Methos in stream ecology, ed. F.R. Hauer and G.A. Lamberti, 711–720. San Diego, CA: Academic Press.

    Google Scholar 

  4. Bouillon, S., A.V. Borges, E. Castañeda-Moya, K. Diele, T. Dittmar, N.C. Duke, E. Kristensen, S.Y. Lee, C. March, J.J. Middelburg, V.H. Rivera-Monroy, R.R. Twilley, and T.J. Smith. 2008. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles 22: GB2013.

    Article  CAS  Google Scholar 

  5. Brighthaupt, J.L., J.M. Smoak, V.H. Rivera-Monroy, E. Castañeda-Moya, R.P. Moyer, M. Simard, and C.J. Sanders. 2017. Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils. Marine Geology 390: 170–180.

    Article  CAS  Google Scholar 

  6. Cahoon, D.R., P. Hensel, J. Rybczyk, K.L. McKee, C.E. Proffitt, and B.C. Perez. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91 (6): 1093–1105.

    Article  Google Scholar 

  7. Castañeda-Moya, E., R.R. Twilley, V.H. Rivera-Monroy, B.D. Marx, C. Coronado-Molina, and S.M.L. Ewe. 2011. Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14 (7): 1178–1195.

    Article  CAS  Google Scholar 

  8. Chambers, L.G., S.E. Davis, T.T. Troxler, J.N. Boyer, A. Downey-Wall, and L.J. Scinto. 2013. Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia. https://doi.org/10.1007/s10750-10013-11764-10756.

  9. Chambers, L.G., S.E. Davis, and T.G. Troxler. 2015. Sea level rise in the Everglades: Plant-soil-microbial feedbacks in response to changing physical conditions. In Microbiology of the Everglades ecosystem, ed. J.A. Entry, 89–112. Boca Raton: CRC.

    Google Scholar 

  10. Chambers, L.G., H.E. Steinmuler, and J. Breithaupt. 2019. Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss. Ecology. https://doi.org/10.1002/ecy.2720.

  11. Childers, D.L., D. Iwaniec, D. Rondeau, G. Rubio, E. Verdon, and C.J. Madden. 2006. Responses of sawgrass and spikerush to variation in hydrologic drivers and salinity in Southern Everglades marshes. Hydrobiologia 569 (1): 273–292.

    Article  Google Scholar 

  12. Chmura, G.L., S.C. Anisfeld, D.R. Cahoon, and J.C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 12.

    Article  CAS  Google Scholar 

  13. Cornwell, W.K., J.H.C. Cornelissen, K. Amatangelo, E. Dorrepaal, V.T. Eviner, O. Godoy, S.E. Hobbie, B. Hoorens, H. Kurokawa, N. Perez-Harguindeguy, H.M. Quested, L.S. Santiago, D.A. Wardle, I.J. Wright, R. Aerts, S.D. Allison, P. van Bodegom, V. Brovkin, A. Chatain, T.V. Callaghan, S. Diaz, E. Garnier, D.E. Gurvich, E. Kazakou, J.A. Klein, J. Read, P.B. Reich, N.A. Soudzilovskaia, M.V. Vaieretti, and M. Westoby. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11 (10): 1065–1071.

    Article  Google Scholar 

  14. Craft, C.B., and C.J. Richardson. 1993. Peat accretion and N, P, and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecological Applications 3 (3): 446–458.

    CAS  Article  Google Scholar 

  15. Craft, C.B., J. Vymazal, and C.J. Richardson. 1995. Response of Everglades plant communities to nitrogen and phosphorus additions. Wetlands 15 (3): 258–271.

    Article  Google Scholar 

  16. Dahl, T.E. 2011. Status and trends of wetlands in the conterminous United States 2004–2009. Washington DC: U.S. Department of the Interior, Fish and Wildlife Service.

    Google Scholar 

  17. Daoust, R.J., and D.L. Childers. 2004. Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem. Oecologia 141 (4): 672–686.

    Article  Google Scholar 

  18. Davidson, E.A., R.L. Nifong, R.B. Ferguson, C. Palm, D.L. Osmond, and J.S. Baron. 2016. Nutrients in the nexus. Journal of Environmental Studies and Sciences 6 (1): 25–38.

    Article  Google Scholar 

  19. Davis, S.M., and J.C. Ogden. 1994. Everglades: The ecosystem and its restoration. Boca Raton, FL: St. Lucie Press.

    Book  Google Scholar 

  20. Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490 (7420): 388–395.

    CAS  Article  Google Scholar 

  21. Delaune, R.D., J.A. Nyman, and W.H. Patrick. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.

    Google Scholar 

  22. Dessu, S.B., R.M. Price, T.G. Troller, and J.S. Kominoski. 2018. Effects of sea-level rise and freshwater management on local water levels and water quality in the Florida Coastal Everglades. Journal of Environmental Management 211: 164–176.

    Article  Google Scholar 

  23. Ewe, S.M.L., E.E. Gaiser, D.L. Childers, D. Iwaniec, V.H. Rivera-Monroy, and R.R. Twilley. 2006. Spatial and temporal patterns of aboveground net primary productivity along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569 (1): 459–474.

    Article  Google Scholar 

  24. Flower, H., M. Rains, and C. Fitz. 2017a. Visioning the future: Scenarios modeling of the Florida Coastal Everglades. Environmental Management 60 (5): 989–1009.

    Article  Google Scholar 

  25. Flower, H., M. Rains, D. Lewis, J.Z. Zhang, and R. Price. 2017b. Saltwater intrusion as potential driver of phosphorus release from limestone bedrock in a coastal aquifer. Estuarine Coastal and Shelf Science 184: 166–176.

    CAS  Article  Google Scholar 

  26. Gaiser, E.E., J.C. Trexler, J.H. Richards, D.L. Childers, D. Lee, A.L. Edwards, L.J. Scinto, K. Jayachandran, G.B. Noe, and R.D. Jones. 2005. Cascading ecological effects of low-level phosphorus enrichment in the Florida everglades. Journal of Environmental Quality 34 (2): 717–723.

    CAS  Article  Google Scholar 

  27. Griscom, B.W., J. Adams, P.W. Ellis, R.A. Houghton, G. Lomax, D.A. Miteva, W.H. Schlesinger, D. Shoch, J.V. Siikamaki, P. Smith, P. Woodbury, C. Zganjar, A. Blackman, J. Campari, R.T. Conant, C. Delgado, P. Elias, T. Gopalakrishna, M.R. Hamsik, M. Herrero, J. Kiesecker, E. Landis, L. Laestadius, S.M. Leavitt, S. Minnemeyer, S. Polasky, P. Potapov, F.E. Putz, J. Sanderman, M. Silvius, E. Wollenberg, and J. Fargione. 2017. Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America 114 (44): 11645–11650.

    CAS  Article  Google Scholar 

  28. Herbert, E.R., P. Boon, A.J. Burgin, S.C. Neubauer, R.B. Franklin, M. Ardón, K.N. Hopfensperger, L.P.M. Lamers, and P. Gell. 2015. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: 43.

    Article  Google Scholar 

  29. Hohner, S.M., and T.W. Dreschel. 2015. Historical and recent condition of Everglades peats. Mires and Peat 16: 1–15.

    Google Scholar 

  30. Huston, M.A. 1997. Landscape patterns: Gradients and zonation. Gainesville, FL: University Press of Florida.

    Google Scholar 

  31. Ise, T., A.L. Dunn, S.C. Wofsy, and P.R. Moorcroft. 2008. High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience 1 (11): 763–766.

    CAS  Article  Google Scholar 

  32. Karam, A. 1993. Chemical properties of organic soils. In Soil sampling and methods of analysis, ed. M.R. Carter and for Canadian Society of Soil Science, 459–471. London: Lewis.

    Google Scholar 

  33. Kauffman, J.B., V.B. Arifanti, H.H. Trejo, M.C.J. Garcia, J. Norfolk, M. Cifuentes, D. Hadriyanto, and D. Murdiyarso. 2017. The jumbo carbon footprint of a shrimp: Carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment 15 (4): 183–188.

    Article  Google Scholar 

  34. Kirwan, M.L., J. A. Langley, G. R. Guntenspergen, and J. P. Megonigal. 2013. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes. Biogeosciences 10 (3):1869-1876.

  35. Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504 (7478): 53–60.

    CAS  Article  Google Scholar 

  36. Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Fagherazzi. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6 (3): 253–260.

    Article  Google Scholar 

  37. Krauss, K.W., J.A. Duberstein, T.W. Doyle, W.H. Conner, R.H. Day, L.W. Inabinette, and J.L. Whitbeck. 2009. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients. Wetlands 29 (2): 505–519.

    Article  Google Scholar 

  38. Lovelock, C.E., T. Atwood, J. Baldock, C.M. Duarte, S. Hickey, P.S. Lavery, P. Masque, P.I. Macreadie, A.M. Ricart, O. Serrano, and A. Steve. 2017. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment 15 (5): 257–265.

    Article  Google Scholar 

  39. Macek, P., and E. Rejmankova. 2007. Response of emergent macrophytes to experimental nutrient and salinity additions. Functional Ecology 21 (3): 478–488.

    Article  Google Scholar 

  40. McKee, K.L., D.R. Cahoon, and I.C. Feller. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16 (5): 545–556.

    Article  Google Scholar 

  41. McLeod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Bjork, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, and B.R. Silliman. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9 (10): 552–560.

    Article  Google Scholar 

  42. McVoy, C., P.W. Said, J. Obeysekera, J.A. VanArman, and T.W. Drescher. 2011. Landscapes and hydrology of the predrainage Everglades. Gainesville, FL: University Press of Florida.

    Google Scholar 

  43. Meeder, J.F., R.W. Parkinson, P.L. Ruiz, and M. Ross. 2017. Saltwater encroachment and prediction of future ecosystem response to the Anthropocene Marine Transgression, Southeast Saline Everglades, Florida. Hydrobiologica 803 (1): 29–48.

    Article  Google Scholar 

  44. Mitsch, W.J. and J.G. Gosselink. 2007. Wetlands. 4th ed. Hoboken, NJ: Wiley.

    Google Scholar 

  45. Morris, J.T., D.C. Barber, J.C. Callaway, R. Chambers, S.C. Hagen, C.S. Hopkinson, B.J. Johnson, P. Megonigal, S.C. Neubauer, T. Troxler, and C. Wigand. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earths Future 4 (4): 110–121.

    Article  Google Scholar 

  46. Morris, J.T., P.V. Sundareshwar, C. T. Nietch, B. Kjerfve, D. R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10):2869–2877.

  47. Nahlik, A.M., and M.S. Fennessy. 2016. Carbon storage in US wetlands. Nature Communications 7 (1): 13835.

    CAS  Article  Google Scholar 

  48. Nerem, R.S., B.D. Beckley, J.T. Fasullo, B.D. Hamlington, D. Masters, and G.T. Mitchum. 2018. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences of the United States of America 115 (9): 2022–2025.

    CAS  Article  Google Scholar 

  49. Neubauer, S.C. 2008. Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine Coastal and Shelf Science 78 (1): 78–88.

    Article  Google Scholar 

  50. Neubauer, S.C., R.B. Franklin, and D.J. Berrier. 2013. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon. Biogeosciences 10 (12): 8171–8183.

    Article  CAS  Google Scholar 

  51. Newman, S., J.B. Grace, and J.W. Koebel. 1996. Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: Implications for Everglades restoration. Ecological Applications 6 (3): 774–783.

    Article  Google Scholar 

  52. Newman, S., H. Kumpf, J.A. Laing, and W.C. Kennedy. 2001. Decomposition responses to phosphorus enrichment in an Everglades (USA) slough. Biogeochemistry 54: 229-250.

  53. Nyman, J.A., R.D. Delaune, H.H. Roberts, and W.H. Patrick. 1993. Relatinship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series 96: 269–279.

    Article  Google Scholar 

  54. Nyman, J.A., R.J. Walters, R.D. Delaune, and W.H. Patrick. 2006. Marsh vertical accretion via vegetative growth. Estuarine Coastal and Shelf Science 69 (3-4): 370–380.

    Article  Google Scholar 

  55. Osland, M.J., A.C. Spivak, J.A. Nestlerode, J.M. Lessmann, A.E. Almario, P.T. Heitmuller, M.J. Russell, K.W. Krauss, F. Alvarez, D.D. Dantin, J.E. Harvey, A.S. From, N. Cormier, and C.L. Stagg. 2012. Ecosystem development after mangrove wetland creation: Plant-soil change across a 20-year chronosequence. Ecosystems 15 (5): 848–866.

    CAS  Article  Google Scholar 

  56. Pan, Y., R.J. Stevenson, P. Vaithiyanathan, J. Slate, and C.J. Richardson. 2000. Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, U.S.A. Freshwater Biology 44 (2): 339–353.

    Article  Google Scholar 

  57. Pendleton, L., D.C. Donato, B.C. Murray, S. Crooks, W.A. Jenkins, S. Sifleet, C. Craft, J.W. Fourqurean, J.B. Kauffman, N. Marba, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon, and A. Baldera. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. Plos One 7. https://doi.org/10.1371/journal.pone.0043542.

  58. Price, R.M., M.R. Savabi, J.L. Jolicoeur, and S. Roy. 2010. Adsorption and desorption of phosphate on limestone in experiments simulating seawater intrusion. Applied Geochemistry 25 (7): 1085–1091.

    CAS  Article  Google Scholar 

  59. Price, R.M., P.K. Swart, and J.W. Fourqurean. 2006. Coastal groundwater discharge – an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569 (1):23–36.

  60. Qualls, R.G., and C.J. Richardson. 2000. Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms. Soil Science Society of America Journal 64 (2): 799–808.

    CAS  Article  Google Scholar 

  61. Qualls, R.G., and C.J. Richardson. 2008. Carbon cycling and dissolved organic matter export in the northern Everglades. In The Everglades experiments, ecological studies, ed. C.J. Richardson. New York: Springer.

    Google Scholar 

  62. R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 05 June 2016.

  63. Rogers, K., and N. Saintilan. 2008. Relationships beetween surface elevation and groundwater in mangrove forests of Southeast Australia. Journal of Coastal Research 24: 63–69.

    Article  Google Scholar 

  64. Ross, M.S., J.F. Meeder, J.P. Sah, P.L. Ruiz, and G.J. Telesnicki. 2000. The Southeast Saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11 (1): 101–112.

    Article  Google Scholar 

  65. Sandoval, E., R.M. Price, D. Whitman, and A.M. Melesse. 2016. Long-term (11 years) study of water balance, flushing times and water chemistry of a coastal wetland undergoing restoration, Everglades, Florida, USA. Catena 144: 74–83.

    CAS  Article  Google Scholar 

  66. Scharlemann, J.P.W., E.V.J. Tanner, R. Hiederer, and V. Kapos. 2014. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management 5 (1): 81–91.

    CAS  Article  Google Scholar 

  67. Schrift, A.M., I.A. Mendelssohn, and M.D. Materne. 2008. Salt marsh restoration with sediment-slurry amendments following a drought induced large-scale disturbance. Wetlands 28 (4): 1071–1085.

    Article  Google Scholar 

  68. Servais, S.J., S. Kominoski, S.P. Charles, E.E. Gaiser, V. Mazzei, T.G. Troxler, and B.J. Wilson. 2019. Testing effects of salinity and phosphorus loading on microbial functions in experimental freshwater wetlands. Geoderma 337: 1291–1300.

    CAS  Article  Google Scholar 

  69. Sklar, F.H., M.J. Chimney, S. Newman, P. McCormick, D. Gawlik, S.L. Miao, C. McVoy, W. Said, J. Newman, C. Coronado, G. Crozier, M. Korvela, and K. Rutchey. 2005. The ecological-societal underpinnings of Everglades restoration. Frontiers in Ecology and the Environment 3: 161–169.

    Google Scholar 

  70. Solorzano, L., and J.H. Sharp. 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural-waters. Limnology and Oceanography 25 (4): 754–757.

    CAS  Article  Google Scholar 

  71. Sweet, W.V., R. Horton, R.E. Kopp, A.N. LeGrande, and A. Romanou. 2017. Sea level rise. In climate science special report: fourth national climate assessment, Volume I. In U.S. Global Change Research Program, ed. D.J. Wuebbles, D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock, 333–363. https://doi.org/10.7930/J0VM49F2.

    Google Scholar 

  72. Swift, M.J., O.W. Heal, and J.M. Anderson. 1979. Decomposition in terrestrial ecosystems. Oxford, UK: Blackwell Scientific.

    Google Scholar 

  73. Tate, R.L.III. 1980. Microbial oxidation of histosols. Advances in Microbial Ecology 4:169–210.

  74. Tilman, D. 1985. The resource-ratio hypotheis of plant sucession. American Naturalist 125 (6): 827–852.

    Article  Google Scholar 

  75. Titus, J.G., and C. Richman. 2001. Maps of lands vulnerable to sea level rise: Modeled elevations along the US Atlantic and Gulf coasts. Climate Research 18: 205–228.

    Article  Google Scholar 

  76. Trenberth, K.E., A.G. Dai, G. van der Schrier, P.D. Jones, J. Barichivich, K.R. Briffa, and J. Sheffield. 2014. Global warming and changes in drought. Nature Climate Change 4 (1): 17–22.

    Article  Google Scholar 

  77. Troxler, T.G., D.L. Childers, and C.J. Madden. 2014. Drivers of decadal-scale change in southern Everglades wetland macrophyte communities of the coastal ecotone. Wetlands 34 (S1): 81–90.

    Article  Google Scholar 

  78. Vogt, K.A., D.J. Vogt, and J. Bloomfield. 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil 200 (1): 71–89.

    CAS  Article  Google Scholar 

  79. Volk, B.G. 1973. Everglades histosol subsidence: CO2 evolution as affected by soil type, temperature, and moisture. Soil and Crop Science Society of Florida Proceedings 32: 132–135.

  80. Wdowinski, S., R. Bray, B.P. Kirtman, and Z.H. Wu. 2016. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean & Coastal Management 126: 1–8.

    Article  Google Scholar 

  81. Weston, N.B., S.C. Neubauer, D.J. Velinsky, M.A. Vile. 2014. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120 (1–3):163–189.

  82. Weston, N.B., M.A. Vile, S.C. Neubauer, and D.J. Velinsky. 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102 (1-3): 135–151.

    CAS  Article  Google Scholar 

  83. Whelan, K.R.T., T.J. Smith III, D.R. Cahoon, J.C. Lynch, and G.H. Anderson. 2005. Goundwater control of mangrove surfaxe elevation; shrink and swell varies with soil depth. Estuaries 28 (6): 833–843.

    Article  Google Scholar 

  84. Wilson, B.J., B. Mortazavi, and R.P. Kiene. 2015. Spatial and temporal variability in methane and carbon dioxide exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry 123 (3): 329–347.

    CAS  Article  Google Scholar 

  85. Wilson, B.J., S. Servais, S.P. Charles, V. Mazzei, J.S. Kominoski, E. Gaiser, J. Richards, and T. Troxler. 2018. Declines in plant productivity drive carbon loss from brackish coastal wetland mesocosms exposed to saltwater intrusion. Estuaries and Coasts 28: 2092–2108.

    Google Scholar 

  86. Wilson, B.J., S. Servais, S.P. Charles, V. Mazzei, J.S. Kominoski, E. Gaiser, J. Richards, and T. Troxler. 2019. Phosphorus alleviation of salinity stress: Effects of saltwater intrusion on an Everglades freshwater peat marsh. Ecology 100 (5): e02672. https://doi.org/10.1002/ecy.2672.

    Article  Google Scholar 

  87. Woodroffe, C.D. 1990. The impact of sea-level rise on mangrove shorelines. Progress in Physical Geography 14 (4): 483–520.

    Article  Google Scholar 

  88. Woodward, G., M.O. Gessner, P.S. Giller, V. Gulis, S. Hladyz, A. Lecerf, B. Malmqvist, B.G. Mckie, S.D. Tiegs, and H. Cariss. 2012. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science Magazine 336: 1438–1440.

    CAS  Google Scholar 

  89. Xue, S.K. 2018. Appendix 3A-5: water year 2017 and five-year (water year 2013–2017) annual flows and total phosphorus loads and concentrations by structure and area. In 2018 South Florida environmental report—volume I. West Palm Beach, FL: South Florida Water Management District.

    Google Scholar 

  90. Zimmermann, C.F., and C.W. Keefe. 1997. Method 440.0. Determination of carbon and nitrogen in sediments and particulates of estuarine/coastal waters using elemental analysis. Cincinnati, OH: U.S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research and Development.

    Google Scholar 

Download references

Acknowledgments

We thank Laura Baumann, Michael Kline, Michelle Robinson, and Patricia LeRoy for their help in the field and laboratory and Florida Department of Transportation, District 4, for permission and access to obtain freshwater peat cores. Sean Charles was supported by Florida International University (FIU) Teaching Assistantships, Dr. John Kominoski, and the FIU Dissertation Year Fellowship. This is contribution number 917 from the Southeast Environmental Research Center in the Institute of Water and Environment and contribution number 22 from the Sea Level Solutions Center from Florida International University.

Funding

Funding for this research was provided by the National Science Foundation’s Florida Coastal Everglades Long Term Ecological Research Program (DEB-1237517) and Florida Sea Grant (RC-S-56), with the cooperation of the Everglades Section of the South Florida Water Management District. Additional funding and support was provided by the Everglades Foundation and Everglades National Park.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sean P. Charles.

Additional information

Communicated by Paul A. Montagna

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Charles, S.P., Kominoski, J.S., Troxler, T.G. et al. Experimental Saltwater Intrusion Drives Rapid Soil Elevation and Carbon Loss in Freshwater and Brackish Everglades Marshes. Estuaries and Coasts 42, 1868–1881 (2019). https://doi.org/10.1007/s12237-019-00620-3

Download citation

Keywords

  • Saltwater intrusion
  • Carbon storage
  • Sea-level rise
  • Ecosystem vulnerability
  • Elevation change
  • Coastal wetlands
  • Phosphorus
  • Salinity
  • Inundation