Estuarine Dissolved Oxygen History Inferred from Sedimentary Trace Metal and Organic Matter Preservation

Abstract

Environmental history recorded in estuarine sediment describes water quality regimes through the use of geochemical and biological proxies. We collected sediment cores from two locations in the Coos Estuary, Oregon, at South Slough and Haynes Inlet, spanning from ~ 1680 AD to the present. To reconstruct the historical water column oxygen in the estuary, we measured geochemical proxies including organic matter, magnetic susceptibility, and elemental composition, and we constructed sediment chronologies using the Pb210 profile and radiocarbon dates. Correlation of geochemical proxies and a detailed 15-year record of dissolved oxygen observations supports the inference of dissolved oxygen (DO) history from these sediment cores: a novel finding for small, seasonal Pacific Northwest estuaries. Geochemical evidence suggests that over the last 300 years, annually or semi-annually averaged dissolved oxygen stress has been increasing at South Slough, while remaining stable or even decreasing at Haynes inlet. This history was explained by changing climatic and land-use effects on erosion and organic matter as well as the role of shipping channel maintenance in providing a dissolved oxygen reservoir at Haynes Inlet relative to the more isolated South Slough.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adams, Katherine A., John A. Barth, and Francis Chan. 2013. Temporal variability of near-bottom dissolved oxygen during upwelling off central Oregon. Journal of Geophysical Research: Oceans 118 (10): 4839–4854. https://doi.org/10.1002/jgrc.20361.

    CAS  Article  Google Scholar 

  2. Adelson, J.M., G.R. Helz, and C.V. Miller. 2001. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments. Geochimica et Cosmochimica Acta 65 (2): 237–252. https://doi.org/10.1016/S0016-7037(00)00539-1.

    Article  CAS  Google Scholar 

  3. Andrews, Alicia, and Kristin Kutara. 2005. Oregon’s timber harvests: 1849–2004. Oregon Department of Forestry. Salem, OR. https://www.oregon.gov/ODF/Documents/WorkingForests/oregonstimberharvests.pdf. Accessed 11 May 2019.

  4. Appleby, P.G., and F. Oldfield. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5 (1): 1–8. https://doi.org/10.1016/S0341-8162(78)80002-2.

    Article  CAS  Google Scholar 

  5. Bianchi, T.S., S.F. DiMarco, Jr H. Cowan, R.D. Hetland, P. Chapman, J.W. Day, and M.A. Allison. 2010. The science of hypoxia in the northern Gulf of Mexico: A review. Science of the Total Environment. Elsevier B.V. 408: 1471–1484. https://doi.org/10.1016/j.scitotenv.2009.11.047.

    Article  CAS  Google Scholar 

  6. Binford, Michael W. 1990. Calculation and uncertainty analysis of Pb-210 dates for PIRLA project lake sediment cores. Journal of Paleolimnology 3: 253–267.

    Article  Google Scholar 

  7. Blaauw, Maarten, and J. Andrés Christen. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6 (3): 457–474. https://doi.org/10.1214/11-BA618.

    Article  Google Scholar 

  8. Borsuk, M.E., C.A. Stow, R.A. Luettich, H.W. Paerl, and J.L. Pinckney. 2001. Modelling oxygen dynamics in an intermittently stratified estuary: Estimation of process rates using field data. Estuarine, Coastal and Shelf Science 52 (1): 33–49. https://doi.org/10.1006/ecss.2000.0726.

    Article  CAS  Google Scholar 

  9. Brandenberger, Jill M., Patrick Louchouarn, and Eric A. Crecelius. 2011. Natural and post-urbanization signatures of hypoxia in two basins of Puget Sound: Historical reconstruction of redox sensitive metals and organic matter inputs. Aquatic Geochemistry 17 (4-5): 645–670.

    Article  CAS  Google Scholar 

  10. Bricker, S.B., J.G. Ferreira, and T. Simas. 2003. An integrated methodology for assessment of estuarine trophic status. Ecological Modelling 169 (1): 39–60. https://doi.org/10.1016/S0304-3800(03)00199-6.

    Article  CAS  Google Scholar 

  11. Bricker, S.B., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner. 2008. Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algae 8 (1): 21–32. https://doi.org/10.1016/j.hal.2008.08.028.

    Article  CAS  Google Scholar 

  12. Brown, Cheryl A., and James H. Power. 2011. Historic and recent patterns of dissolved oxygen in the Yaquina Estuary (Oregon, USA): Importance of anthropogenic activities and oceanic conditions. Estuarine, Coastal and Shelf Science. Elsevier Ltd 92: 446–455. https://doi.org/10.1016/j.ecss.2011.01.018.

    Article  CAS  Google Scholar 

  13. Brush, Grace S. 2009. Historical land use, nitrogen, and coastal eutrophication: A paleoecological perspective. Estuaries and Coasts 32 (1): 18–28. https://doi.org/10.1007/s12237-008-9106-z.

    Article  CAS  Google Scholar 

  14. Canuel, Elizabeth A., and Amber K. Hardison. 2016. Sources, ages, and alteration of organic matter in estuaries. Annual Review of Marine Science 8: annurev-marine-122414-034058. https://doi.org/10.1146/annurev-marine-122414-034058.

    Article  Google Scholar 

  15. Chan, F., J. Barth, J. Lubchenco, A. Kirincich, H. Weeks, W.T. Peterson, and B. Menge. 2008. Emergence of anoxia in the California current large marine ecosystem. Science 319 (5865): 920. https://doi.org/10.1126/science.1149016.

    Article  CAS  Google Scholar 

  16. Connolly, T.P., B.M. Hickey, S.L. Geier, and W.P. Cochlan. 2010. Processes influencing seasonal hypoxia in the northern California current system. Journal of Geophysical Research: Oceans 115 (C3): 1–22. https://doi.org/10.1029/2009JC005283.

    Article  CAS  Google Scholar 

  17. Conroy, Ted. 2018. The dynamics and exchange flow variability of the Coos Estuary. University of Oregon.

  18. Cronin, T.M., R. Thunell, G.S. Dwyer, C. Saenger, M.E. Mann, C. Vann, and Ii R. Seal. 2005. Multiproxy evidence of Holocene climate variability from estuarine sediments, eastern North America. Paleoceanography 20 (4). https://doi.org/10.1029/2005PA001145.

  19. Dean, Walter E., Yan Zheng, Joseph D. Ortiz, and Alexander van Geen. 2006. Sediment Cd and Mo accumulation in the oxygen-minimum zone off western Baja California linked to global climate over the past 52 kyr. Paleoceanography 21 (4): 1–13. https://doi.org/10.1029/2005PA001239.

    Article  Google Scholar 

  20. Diaz, Robert J., and Rutger Rosenberg. 2008. Spreading dead zones and. Science 321 (5891): 926–929. https://doi.org/10.1126/science.1156401.

    Article  CAS  Google Scholar 

  21. Douthit, Nathan. 1999. A guide to Oregon south coast history. Corvallis: Oregon State University Press.

    Google Scholar 

  22. Eakins, J.D., and R.T. Morrison. 1978. A new procedure for the determination of lead- 210 in lake and marine sediments. Journal of Applied Radiation and Isotopes 29 (9-10): 531–536.

    Article  CAS  Google Scholar 

  23. Erlandson, Jon M., Madonna L. Moss, and Matthew Des Lauriers. 2008. Life on the edge: early maritime cultures of the Pacific Coast of North America. Quaternary Science Reviews. Elsevier Ltd 27: 2232–2245. https://doi.org/10.1016/j.quascirev.2008.08.014.

    Article  Google Scholar 

  24. Galimany, Eve, Gary H. Wikfors, Mark S. Dixon, Carter R. Newell, Shannon L. Meseck, Dawn Henning, Yaqin Li, and Julie M. Rose. 2017. Cultivation of the ribbed mussel (Geukensia demissa) for nutrient bioextraction in an urban estuary. Environmental Science and Technology 51 (22): 13311–13318. https://doi.org/10.1021/acs.est.7b02838.

    Article  CAS  Google Scholar 

  25. Gooday, A.J., F. Jorissen, L. Levin, J.J. Middelburg, S.W. Naqvi, N.N. Rabalais, M. Scranton, and J. Zhang. 2009. Historical records of coastal eutrophication-induced hypoxia. Biogeosciences 6 (8): 1707–1745. https://doi.org/10.5194/bg-6-1707-2009.

    Article  CAS  Google Scholar 

  26. Goodrich, Gregory B. 2007. Influence of the Pacific decadal oscillation on winter precipitation and drought during years of neutral ENSO in the Western United States. Weather and Forecasting 22 (1): 116–124. https://doi.org/10.1175/WAF983.1.

    Article  Google Scholar 

  27. Grantham, Brian A., Francis Chan, Karina J. Nielsen, David S. Fox, John A. Barth, Adriana Huyer, Jane Lubchenco, and Bruce A. Menge. 2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429 (6993): 749–754. https://doi.org/10.1038/nature02605.

    Article  CAS  Google Scholar 

  28. Heiri, Oliver, André F. Lotter, and Gerry Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology 25 (1): 101–110. https://doi.org/10.1023/A:1008119611481.

    Article  Google Scholar 

  29. Hickey, Barbara M., and Neil S. Banas. 2003. Oceanography of the U.S. Pacific Northwest coastal ocean and estuaries with application to coastal ecology. Estuaries 26 (4): 1010–1031. https://doi.org/10.1007/BF02803360.

    Article  Google Scholar 

  30. Howarth, Robert, Francis Chan, Daniel J. Conley, Josette Garnier, Scott C. Doney, Roxanne Marino, and Gilles Billen. 2011. Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment 9 (1): 18–26. https://doi.org/10.1890/100008.

    Article  Google Scholar 

  31. Jaworski, Norbert A. 1981. Sources of nutrients and the scale of eutrophication problems in estuaries. In Estuaries and nutrients, ed. Bruce J. Neilson and Lewis Eugene Cronin, 83–110. Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-4612-5826-1_5.

    Google Scholar 

  32. Kelsey, Harvey M., Robert C. Witter, and Eileen Hemphill-Haley. 1998. Response of a small Oregon estuary to coseismic subsidence and postseismic uplift in the past 300 years. Geology 26 (3): 231–234.

    Article  Google Scholar 

  33. Kemp, W.M., and W.R. Boynton. 1980. Influence of biological and physical processes on dissolved oxygen dynamics in an estuarine system: Implications for measurement of community metabolism. Estuarine and Coastal Marine Science 11 (4): 407–431. https://doi.org/10.1016/S0302-3524(80)80065-X.

    Article  Google Scholar 

  34. Lansing, William A. 2005. Seeing the forest for the trees. Eugene: The Monroe Press.

    Google Scholar 

  35. Lansing, William A. 2007. “Can’t you hear the whistle Blowin”?’: Logs, lignite and locomotives in Coos County, OR. North Bend, OR: Self.

    Google Scholar 

  36. Lemagie, Emily P., and James A. Lerczak. 2015. A comparison of bulk estuarine turnover timescales to particle tracking timescales using a model of the Yaquina Bay Estuary. Estuaries and Coasts 38 (5): 1797–1814. https://doi.org/10.1007/s12237-014-9915-1.

    Article  Google Scholar 

  37. MacCready, Parker, and W. Rockwell Geyer. 2010. Advances in estuarine physics. Annual Review of Marine Science 2 (1): 35–58. https://doi.org/10.1146/annurev-marine-120308-081015.

    Article  Google Scholar 

  38. Mantua, Nate. 2016. The Pacific Decadal Occilation (PDO). http://research.jisao.washington.edu/pdo/. Accessed 09 Dec 2016.

  39. Mathieu, G.G., P.E. Biscaye, R.A. Lupton, and D.E. Hammond. 1988. System for measurement of 222-Rn at low levels in natural waters. Health Physics 55 (6): 989–992.

    Article  CAS  Google Scholar 

  40. McConnachie, J.L., and E.L. Petticrew. 2006. Tracing organic matter sources in riverine suspended sediment: Implications for fine sediment transfers. Geomorphology 79 (1-2): 13–26. https://doi.org/10.1016/j.geomorph.2005.09.011.

    Article  Google Scholar 

  41. Morelli, Guia, Massimo Gasparon, Daniela Fierro, Wan-Ping Hu, and Atun Zawadzki. 2012. Historical trends in trace metal and sediment accumulation in intertidal sediments of Moreton Bay, southeast Queensland, Australia. Chemical Geology. Elsevier B.V. 300–301: 152–164. https://doi.org/10.1016/j.chemgeo.2012.01.023.

    Article  CAS  Google Scholar 

  42. Nelson, Alan R., Anne E. Jennings, and Kaoru Kashima. 1996. An earthquake history derived from stratigraphic and microfossil evidence of relative sea-level change at Coos Bay, southern coastal Oregon. Bulletin of the Geological Society of America 108 (2): 141–154. https://doi.org/10.1130/0016-7606(1996)108<0141:AEHDFS>2.3.CO;2.

    Article  Google Scholar 

  43. Nezlin, Nikolay P., Krista Kamer, Jim Hyde, and Eric D. Stein. 2009. Dissolved oxygen dynamics in a eutrophic estuary, Upper Newport Bay, California. Estuarine, Coastal and Shelf Science. Elsevier Ltd 82: 139–151. https://doi.org/10.1016/j.ecss.2009.01.004.

    Article  CAS  Google Scholar 

  44. Nixon, Scott W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41 (1): 199–219.

    Article  Google Scholar 

  45. O’Higgins, Timothy, and Steven S. Rumrill. 2007. Tidal and watershed forcing of nutrients and dissolved oxygen stress within four Pacific coast estuaries: Analysis of time-series data collected by the National Estuarine Research Reserve System-Wide Monitoring Program (2000-2006) within Padilla Bay (WA). The NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET). https://doi.org/10.1017/CBO9781107415324.004.

  46. Peterson, Emil R. 1952. A century of Coos and Curry: History of southwest Oregon. Portland, OR: Binfords & Mort for Coos-Curry Pioneer and Historical Association, Coquille.

    Google Scholar 

  47. Peterson, Jay O., Cheryl A. Morgan, William T. Peterson, and Emanuele Di Lorenzo. 2013. Seasonal and interannual variation in the extent of hypoxia in the northern California Current from 1998-2012. Limnology and Oceanography 58 (6): 2279–2292. https://doi.org/10.4319/lo.2013.58.6.2279.

    Article  CAS  Google Scholar 

  48. Pierce, S.D., and John A. Barth. 2018. Wind stress, cumulative wind stress, and spring transition dates: data products for Oregon upwelling-related research. http://damp.coas.oregonstate.edu/windstress/2018.html. Accessed 10 Apr 2018.

  49. Pierce, Stephen D., John A. Barth, R. Kipp Shearman, and Anatoli Y. Erofeev. 2012. Declining oxygen in the Northeast Pacific*. Journal of Physical Oceanography 42 (3): 495–501. https://doi.org/10.1175/JPO-D-11-0170.1.

    Article  Google Scholar 

  50. R Core Team. 2018. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  51. Reimer, Paula J., Bullet Edouard Bard, Bullet Alex Bayliss, Bullet J. Warren Beck, Bullet G. Paul Blackwell, and Bullet Christopher Bronk Ramsey. 2013. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years Cal Bp. Radiocarbon 55 (4): 1869–1887.

    Article  CAS  Google Scholar 

  52. Ridgway, J., and G. Shimmield. 2002. Estuaries as repositories of historical contamination and their impact on shelf seas. Estuarine, Coastal and Shelf Science 55 (6): 903–928. https://doi.org/10.1006/ecss.2002.1035.

    Article  CAS  Google Scholar 

  53. Ridgway, J., N. Breward, W.J. Langston, R. Lister, J.G. Rees, and S.M. Rowlatt. 2003. Distinguishing between natural and anthropogenic sources of metals entering the Irish Sea. Applied Geochemistry 18 (2): 283–309. https://doi.org/10.1016/S0883-2927(02)00126-9.

    Article  CAS  Google Scholar 

  54. Ringler, Neil H., and James D. Hall. 1975. Effects of logging on water temperature and dissolved oxygen in spawning beds. Transactions of the American Fisheries Society 1: 111–121. https://doi.org/10.1577/1548-8659(1975)104<111.

    Article  Google Scholar 

  55. Roegner, G. Curtis, Joseph A. Needoba, and António M. Baptista. 2011. Coastal upwelling supplies oxygen-depleted water to the columbia river estuary. PLoS One: 6. https://doi.org/10.1371/journal.pone.0018672.

  56. Rumrill, Steven S. 2007. The ecology of the South Slough Estuary: Site profile of the South Slough National Estuarine Research Reserve. Charleston, OR.

  57. Ryther, J.H. 1969. Photosyntesis and fish production in the sea. Science 166 (3901): 72–76.

    Article  CAS  Google Scholar 

  58. Scheiderich, K., G.R. Helz, and R.J. Walker. 2010. Century-long record of Mo isotopic composition in sediments of a seasonally anoxic estuary (Chesapeake Bay). Earth and Planetary Science Letters. Elsevier B.V. 289: 189–197. https://doi.org/10.1016/j.epsl.2009.11.008.

    Article  CAS  Google Scholar 

  59. Sedell, James R., F.N. Leone, and W.S. Duval. 1991. Water transportation and storage of logs. American Fisheries Society Special Publication 19: 325–368.

    Google Scholar 

  60. Stuiver, M., and P.J. Reimer. 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35 (01): 215–230.

    Article  Google Scholar 

  61. Sutherland, David A., and Molly A. O’Neill. 2016. Hydrographic and dissolved oxygen variability in a seasonal Pacific Northwest estuary. Estuarine, Coastal and Shelf Science. Elsevier Ltd 172: 47–59. https://doi.org/10.1016/j.ecss.2016.01.042.

    Article  CAS  Google Scholar 

  62. Swales, A., R.B. Williamson, L.F. Van Dam, M.J. Stroud, and M.S. McGlone. 2002. Reconstruction of urban stormwater contamination of an estuary using catchment history and sediment profile dating. Estuaries 25 (1): 43–56. https://doi.org/10.1007/BF02696048.

    Article  CAS  Google Scholar 

  63. Tribovillard, Nicolas, Thomas J. Algeo, Timothy Lyons, and Armelle Riboulleau. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232 (1-2): 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012.

    Article  CAS  Google Scholar 

  64. United States Department of Agriculture. 2012. Census of agriculture historical archive. http://agcensus.mannlib.cornell.edu/AgCensus/homepage.do. Accessed 05 November 2018.

  65. University of Virginia. 2017. Coos County population. Historical Census Browser. http://mapserver.lib.virginia.edu/. Accessed 10 Dec 2017

  66. Van Geen, Alexander, and Samuel N. Luoma. 1999. The impact of human activities on sediments of San Francisco Bay, California: An overview. Marine Chemistry 64 (1-2): 1–6. https://doi.org/10.1016/S0304-4203(98)00080-2.

    Article  Google Scholar 

  67. Vaquer-Sunyer, R., and C.M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences 105 (40): 15452–15457. https://doi.org/10.1073/pnas.0803833105.

    Article  Google Scholar 

  68. Whitney, Frank A., Howard J. Freeland, and Marie Robert. 2007. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Progress in Oceanography 75 (2): 179–199. https://doi.org/10.1016/j.pocean.2007.08.007.

    Article  Google Scholar 

  69. Wilson, Christopher G., Gerald Matisoff, and Peter J. Whiting. 2007. The use of 7 Be and Pb xs to differentiate fine suspended sediment sources in South Slough, Oregon. Estuaries and Coasts 30 (2): 348–358.

    Article  CAS  Google Scholar 

  70. Youst, Lionel. 1997. She’s tricky like coyote: Annie Miner Peterson, an Oregon coast Indian woman. Norman: Univerisity of Oklahoma Press.

    Google Scholar 

  71. Zhang, Yuan, J.M. Wallace, and D.S. Battisti. 1997. ENSO-like interdecadal variability: 1900-93. Journal of Climate 10 (5): 1004–1020. https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    Article  Google Scholar 

  72. Zheng, Yan, Robert F. Anderson, Alexander Van Geen, and James Kuwabara. 2000. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta 64 (24): 4165–4178. https://doi.org/10.1016/S0016-7037(00)00495-6.

    Article  CAS  Google Scholar 

  73. Zwolsman, John J.G., G.W. Berger, and G.T.M. Van Eck. 1993. Sediment accumulation rates, historical input, postdepositional mobility and retention of major elements and trace metals in salt marsh sediments of the Scheldt estuary, SW Netherlands. Marine Chemistry 44 (1): 73–94. https://doi.org/10.1016/0304-4203(93)90007-B.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We recognize the value of comments from Drs. Emily Eidam, Patricia McDowell, and Erin Herring. As well, thanks to Ted Conroy for providing access to compiled bathymetric data of the Coos Estuary. Many additional thanks to Drs. Federico Cernucci, John Dilles, Anders Carlson, and Marco Esters for technical assistance. We also thank the editor and two anonymous reviewers for their effort in improving the final manuscript.

Funding

This project was partially supported by Oregon Sea Grant under grant number NA14OAR4170064 from the National Oceanic and Atmospheric Administration’s National Sea Grant College Program, US Department of Commerce, and by appropriations made by the Oregon State Legislature. This work was also partially sponsored by the National Estuarine Research Reserve System Science Collaborative, which supports collaborative research that addresses coastal management problems important to the reserves. The Science Collaborative is funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center (NAI4NOS4190145). The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of these funders.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Geoffrey M. Johnson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Dennis Swaney

Electronic supplementary material

ESM 1

(DOCX 1681 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, G.M., Sutherland, D.A., Roering, J.J. et al. Estuarine Dissolved Oxygen History Inferred from Sedimentary Trace Metal and Organic Matter Preservation. Estuaries and Coasts 42, 1211–1225 (2019). https://doi.org/10.1007/s12237-019-00580-8

Download citation

Keywords

  • Water quality proxies
  • Dissolved oxygen
  • Sediment geochemistry
  • Environmental history
  • Estuarine circulation`