Skip to main content

Advertisement

Log in

Optical Characterization of Chromophoric Dissolved Organic Matter (CDOM) and Fe(II) Concentrations in Soil Porewaters Along a Channel-Bank Transect in a Salt Marsh

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Chromophoric dissolved organic matter (CDOM) optical properties were measured in surface and porewaters as a function of depth and distance from the channel in a transect up the bank in a southern California salt marsh. Higher absorbance coefficients and fluorescence intensities in porewaters at depth vs. surface waters and shallower porewaters suggest soil porewater is a reservoir of CDOM in the marsh. Higher values were observed at the marsh sites compared to the channel site, suggesting increased production and storage in the marsh sites, and reduced leaching into overlying surface waters, is occurring. Spectral slope ratios decreased with depth, consistent with more aromatic, higher molecular weight material in the deeper porewaters, possibly due to different bacterial processing in the anaerobic vs. aerobic zones. Fe(II) concentrations, indicative of anaerobic bacterial processing, increased significantly at depth to values > 1000 μM, consistent with active anaerobic microbial processing occurring at depth. The transitions to higher reduced iron concentrations correlated with increased absorbance and fluorescence, suggesting processing by anaerobic iron-reducing bacteria in these deeper zones may not mineralize as much carbon as in the shallower aerobic zones. Alternatively, this may be due to reduction of solid iron oxides coated with organic matter releasing both DOM and Fe(II). The ratio of humic-like fluorescence to the absorption coefficient decreased with increasing iron concentration, possibly due to optical interference by iron species. Taken together, the data indicate that marsh sites in the salt marsh act as a reservoir for higher molecular weight, more aromatic organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beaer, J.E., W.-J. W-J Cai, P.A. Raymond, T.S. Bianchi, C.S. Hopkinson, and P.A.G. Regnier. 2013. The changing carbon cycle of the coastal ocean. Nature 504 (7478): 61–70.

    Article  CAS  Google Scholar 

  • Belzile, C., and L. Guo. 2006. Optical properties of low molecular weight and colloidal organic matter: application of the ultrafiltration permeation model to DOM absorption and fluorescence. Marine Chemistry 98 (2-4): 183–196.

    Article  CAS  Google Scholar 

  • Blair, E.M., B.J. Allen, and C.R. Whitcraft. 2013. Evaluating monoculture vs. polyculture regimes in a newly restored Southern California salt marsh. Bulletin of the Southern California Academy of Sciences 112: 1–14.

    Article  Google Scholar 

  • Bowen, J.C., C.D. Clark, J.K. Keller, and W.J. De Bruyn. 2017. Optical properties of chromophoric dissolved organic matter (CDOM) in surface and porewaters adjacent to an oil well in a southern California salt marsh. Marine Pollution Bulletin 114 (1): 157–168.

    Article  CAS  Google Scholar 

  • Bridgham, S.D., J.P. Megonigal, J.K. Keller, N.B. Bliss, and C. Trettin. 2006. The carbon balance of North American wetlands. Wetlands 26 (4): 889–916.

    Article  Google Scholar 

  • Burdige, D.J., S.W. Kline, and W. Chen. 2004. Fluorescent dissolved organic matter in marine sediment porewaters. Marine Chemistry 89 (1-4): 289–311.

    Article  CAS  Google Scholar 

  • Chen, R.F., and J.L. Bada. 1989. Seawater and porewater fluorescence in the Santa Barbara basin. Geophysical Research Letters 16 (7): 687–690. https://doi.org/10.1029/GL016i007p00687.

    Article  CAS  Google Scholar 

  • Chin, Y.-P., G. Aiken, and E. O’Loughlin. 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science & Technology 28 (11): 1853–1858.

    Article  CAS  Google Scholar 

  • Chin, Y.-P., S.J. Traina, C.R. Swank, and D. Backhus. 2003. Abundance and properties of dissolved organic matter in porewaters of a freshwater wetland. Limnology and Oceanography 43 (6): 1287–1296. https://doi.org/10.4319/lo.1998.43.6.1287.

    Article  Google Scholar 

  • Chmura, G.L., S.C. Ansfield, D.R. Cahoon, and T.C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1111.

    Article  CAS  Google Scholar 

  • Clark, C.D., J. Jimenez-Morais, G. JonesII, E. Zanardi-Lamardo, C.A. Moore, and R.G. Zika. 2002. A time-resolved fluorescence study of dissolved organic matter in a riverine to marine transition zone. Marine Chemistry 78 (2-3): 121–135.

    Article  CAS  Google Scholar 

  • Clark, C.D., L.P. Litz, and S.B. Grant. 2008. Salt marshes as a source of chromophoric dissolved organic matter (CDOM) to Southern California coastal waters. Limnology and Oceanography 53 (5): 1923–1933.

    Article  CAS  Google Scholar 

  • Clark, C.D., P. Aiona, J.K. Keller, and W.J. De Bruyn. 2014. Optical characterization and distribution of chromophoric dissolved organic matter (CDOM) in soil porewater from a salt marsh ecosystem. Marine Ecology Progress Series 516: 71–83.

    Article  CAS  Google Scholar 

  • Coble, P.G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry 51 (4): 325–346.

    Article  CAS  Google Scholar 

  • Dalzell, B.J., E.C. Minor, and K.M. Mopper. 2009. Photodegradation of estuarine dissolved organic matter: a multi-method assessment of DOM transformation. Organic Geochemistry 40 (2): 243–257.

    Article  CAS  Google Scholar 

  • del Vecchio, R., and N.V. Blough. 2004. On the origin of the optical properties of humic substances. Environmental Science & Technology 38 (14): 3885–3891.

    Article  CAS  Google Scholar 

  • Dittmar, T., N. Hertkorn, G. Kattner, and R.J. Lara. 2006. Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochemical Cycles 20 (1): GB1012. https://doi.org/10.1029/2005GB002570.

    Article  CAS  Google Scholar 

  • Fellman, J.B., E. Hood, and R.G.M. Spencer. 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnology and Oceanography 55 (6): 2452–2462.

    Article  CAS  Google Scholar 

  • Gallegos, C.L., T.E. Jordan, A.H. Hines, and D.E. Weller. 2005. Temporal variability of optical properties in a shallow, eutrophic estuary: seasonal and interannual variability. Estuarine, Coastal and Shelf Science 64 (2-3): 156–170.

    Article  Google Scholar 

  • Grant, S.B., B.F. Sanders, A.B. Boehm, J.A. Redman, J.H. Kim, R.D. Mrse, A.K. Chu, M. Gouldin, C.D. McGee, N.A. Gardiner, B.H. Jones, J. Svejkovsky, G.V. Leipzig, and A. Brown. 2001. Generation of enterococci bacteria in a coastal saltwater marsh and its impact on surf zone water quality. Environmental Science and Technology 35 (12): 2407–2416.

    Article  CAS  Google Scholar 

  • Green, S.A., and N.V. Blough. 1994. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnology and Oceanography 39 (8): 1903–1916.

    Article  CAS  Google Scholar 

  • Helms, J.R., A. Stubbins, J.D. Ritchie, and E.C. Minor. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53 (3): 955–969.

    Article  Google Scholar 

  • Hessen, D.O. and L.J. Tranvik, 1998. Aquatic humic matter: from molecular structure to ecosystem stability. In D.O. Hessen and L.J. Tranvik [eds.], Ecological studies: aquatic humic substances, p. 333–343, Springer-Verlag.

  • Hesslein, R.H. 1976. An in situ sampler for close interval porewater studies. Limnology and Oceanography 21 (6): 912–914.

    Article  CAS  Google Scholar 

  • Jaffé, R., J.N. Boyer, X. Lu, N. Maie, C.-Y. Yang, N.M. Scully, and S. Mock. 2004. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Marine Chemistry 84 (3-4): 195–210.

    Article  CAS  Google Scholar 

  • Keller, J.K., K.K. Takagi, M.E. Brown, K.N. Stump, C.G. Takhashi, W. Jao, K.L. Au, C.C. Calhoun, R.K. Chundu, K. Hokutan, J.M. Mosolf, and K. Roy. 2012. Soil organic carbon storage in restored salt marshes in Huntington Beach, California. Bulletin of the Southern California Academy of Sciences 111: 153–161.

    Article  Google Scholar 

  • Koretsky, C.M., P. Van Cappellen, T.J. DiChristina, J.E. Kostka, K.L. Lowe, C.M. Moore, A.N. Roychoudry, and E. Viollier. 2005. Salt marsh porewater geochemistry does not correlate with microbial community structure. Estuarine, Coastal and Shelf Science 62 (1-2): 233–251.

    Article  CAS  Google Scholar 

  • Lawaetz, A.J., and C.A. Stedmon. 2009. Fluorescence intensity calibration using the Raman scatter peak of water. Applied Spectroscopy 63 (8): 936–940.

    Article  CAS  Google Scholar 

  • Lee, J., 2018. Evaluating restoration success of a southern California wetland comparing univariate analysis to multivariate and equivalence analyses. Master’s thesis. California State University, Long Beach. Proquest 10752347.

  • Leonard, B., 2001. Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses. Technical manual. Diane Publishing. Ch 6, p7.

  • Loures, C.C.A., M.A.K. Alcantara, H.J.I. Fillno, A.C.S. Teixeira, F.T. Silva, T.C.B. Paiva, and G.R.L. Samanarmud. 2013. Advanced oxidative degradation processes: fundamentals and applications. International Review of Chemical Engineering 5: 102–120.

    Google Scholar 

  • Lovley, D.R., and E.J.P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology 51 (4): 683–689.

    CAS  Google Scholar 

  • Marchand, C., P. Albéric, E. Lallier-Vergès, and F. Baltzer. 2006. Distribution and characteristics of dissolved organic matter in mangrove sediment porewaters along the coastline of French Guiana. Biogeochemistry 81 (1): 59–75. https://doi.org/10.1007/s10533-006-9030-x.

    Article  Google Scholar 

  • McKnight, D.M. and G.R. Aiken. 1998. Sources and age of aquatic humus. In D. O. Hessen and L. J. Tranvik [eds.], Ecological studies: aquatic humic substances, Springer-Verlag.

  • McKnight, D.M., E.D. Andrews, S.A. Spaulding, and G.R. Aiken. 1994. Aquatic fulvic acids in algal-rich antarctic ponds. Limnology and Oceanography 39 (8): 1972–1979.

    Article  Google Scholar 

  • McKnight, D.M., E.W. Boyer, P.K. Westerhoff, P.T. Doran, T. Kulbe, and D.T. Andersen. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46 (1): 38–48.

    Article  CAS  Google Scholar 

  • Miller, W.L. 1998. Effects of UV radiation on aquatic humus: photochemical principles and experimental considerations. In Ecological studies: aquatic humic substances, ed. Hessen and Tranvik, vol. 133. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Moran, M.A., and R.E. Hodson. 1994. Dissolved humic substances of vascular plant origin in a coastal marine environment. Limnology and Oceanography 39 (4): 762–771.

    Article  CAS  Google Scholar 

  • Moran, M.A., and R.G. Zepp. 1997. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnology and Oceanography 42 (6): 1307–1316.

    Article  CAS  Google Scholar 

  • Moran, M.A., W.M. Sheldon, and R.G. Zepp. 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography 45 (6): 1254–1264.

    Article  CAS  Google Scholar 

  • Najjar, R.G., M. Hermann, R. Alexander, E.W. Boyer, D.J. Burdige, D. Buttman, W.J. cai, E.A. Canuel, R.F. Chen, M.A.M. Friedrichs, R.A. Feagin, P.C. Griffith, A.L. Hinson, J.R. Holmquist, X. Hu, W.M. Kemp, K.D. Kroeger, A. Mannino, S.L. McCallister, W.R. McGills, M.R. Mulholland, C.H. Pilskaln, J. Salisbury, S.R. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z.A. Wang, and R.C. Zimmerman. 2018. Carbon budget of tidal wetlands, estuaries and shelf waters of eastern North America. Global Biogeochemical Cycles 32 (3): 389–416.

    Article  CAS  Google Scholar 

  • Obernosterer, I., and R. Benner. 2004. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnology and Oceanography 49 (1): 117–124.

    Article  CAS  Google Scholar 

  • Osburn, C.L., T.J. Boyd, M.T. Montgomery, T.S. Bianchi, R.B. Coffin, and H.W. Paerl. 2016. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Frontiers in Marine Science: Marine Biogeochemistry. https://doi.org/10.3389/fmars2015.00127.

  • Pham, A.N., and T.D. Waite. 2008. Oxygenation of Fe(II) in natural waters revisited: kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways. Geochimica et Cosmochimica Acta 72 (15): 3616–3630.

    Article  CAS  Google Scholar 

  • Poulin, B.A., J.K. Ryan, and G.R. Aiken. 2014. Effects of iron on optical properties of dissolved organic matter. Environmental Science & Technology 48 (17): 10098–10106.

    Article  CAS  Google Scholar 

  • Rochelle-Newall, E.J., and T.R. Fisher. 2002. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Marine Chemistry 77 (1): 23–41.

    Article  CAS  Google Scholar 

  • Schlesinger, W.S., E.S. Bernhardt, 2013. Biogeochemistry: an analysis of global change. 3rd edition. Elsevier. Ch 7: Wetland ecosytems. ISBN-13: 978-012385874.

  • Sierra, M.M.D., O.F.X. Donard, H. Etcheber, E.J. Soriano-Sierra, and M. Ewald. 2001. Fluorescence and DOC contents of porewaters from coastal and deep-sea sediments in the Gulf of Biscay. Organic Geochemistry 11: 1319–1328.

    Article  Google Scholar 

  • Tobias, C. and S.C. Neubauer, 2009. Salt march biogeochemistry—an overview. In Coastal wetlands, Eds. Perillo, G.M.E., E. Wolanski and D.R. Cahoon, Elsevier Press. pp 445–479.

  • Tremblay, L.B., T. Dittmar, A.G. Marshall, W.J. Cooper, and W.T. Cooper. 2007. Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier transform-ion cyclotron resonance mass spectrometry and excitation/emission spectroscopy. Marine Chemistry 105 (1-2): 15–29. https://doi.org/10.1016/j.marchem.2006.12.015.

    Article  CAS  Google Scholar 

  • Tzortziou, M., C.L. Osburn, and P.J. Neale. 2007. Photobleaching of dissolved organic material from a tidal marsh-estuarine system of the Chesapeake Bay. Photochemistry and Photobiology 83 (4): 782–792.

    Article  CAS  Google Scholar 

  • Tzortziou, M., P.J. Neale, C.L. Osburn, J.P. Megonigal, N. Maie, and R. Jaffé. 2008. Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnology and Oceanography 53 (1): 148–159.

    Article  CAS  Google Scholar 

  • Tzortziou, M., P.J. Neale, J.P. Megonigal, C.L. Pow, and M. Butterworth. 2011. Spatial gradients in dissolved organic carbon due to tidal marsh outwelling into a Chesapeake Bay estuary. Marine Ecology Progress Series 426: 41–56.

    Article  CAS  Google Scholar 

  • Vodacek, A., N.V. Blough, M.D. DeGrandpre, E.T. Peltzer, and R.K. Nelson. 1997. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation. Limnology and Oceanography 42 (4): 674–686.

    Article  CAS  Google Scholar 

  • Wang, X.C., L. Litz, R.F. Chen, W. Huang, P. Feng, and M.A. Altabet. 2007. Release of dissolved organic matter during oxic and anoxic decomposition of salt marsh cordgrass. Marine Chemistry 105 (3-4): 309–321.

    Article  CAS  Google Scholar 

  • Wang, Z.A., K.D. Kroeger, N.K. ganju, M.E. Gonnea, and S.N. Chu. 2016. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnology and Oceanography 61 (5): 1916–1931.

    Article  CAS  Google Scholar 

  • Watanabe, A., K. Moroi, H. Sato, K. Tsutsuki, N. Maie, L. Melling, and R. Jaffé. 2012. Contributions of humic substances to the dissolved organic carbon pool in wetlands from different climates. Chemosphere. 88 (10): 1265–1268.

    Article  CAS  Google Scholar 

  • Zsolnay, A. 2003. Dissolved organic matter: artefacts, definitions, and functions. Geoderma. 113 (3-4): 187–209.

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the National Science Foundation (OCE # 1233091; CHE #1337396) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine D. Clark.

Additional information

Communicated by Dennis Swaney

Electronic Supplementary Material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, C.D., Bowen, J.C., de Bruyn, W.J. et al. Optical Characterization of Chromophoric Dissolved Organic Matter (CDOM) and Fe(II) Concentrations in Soil Porewaters Along a Channel-Bank Transect in a Salt Marsh. Estuaries and Coasts 42, 1297–1307 (2019). https://doi.org/10.1007/s12237-019-00558-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00558-6

Keywords

Navigation