Skip to main content

Advertisement

Log in

Nekton Community Responses to Seagrass Differ with Shoreline Slope

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Seagrass beds vary in patch size and shoot density, which can influence the distribution and abundance of nekton responding to habitat structure. In Washington State, USA, eelgrass (Zostera marina) occurs under two distinct shoreline slope conditions: shallow tidal flats where eelgrass forms extensive meadows, and steep slopes near channels where it forms narrow, often patchy, fringes adjacent to unvegetated sediment. We sampled nekton in these naturally occurring habitat mosaics with a crossed design: unvegetated, edge, and interior eelgrass (habitat) in flats and fringes. Multivariate community structure showed additive effects of habitat and slope, while aggregate body size did not vary across habitat, shoot density, or slopes. Total nekton abundance responded to structure on fringes (interior > unvegetated; edge = unvegetated; and interior > edge) but not on flats, while half of the most common taxa showed a significant habitat-by-slope interaction in abundance. Diversity and species richness were greater in fringes than flats, irrespective of habitat type. Since canopy height and shoot density did not differ significantly between fringes and flats, it is unlikely that fine-scale aspects of vegetation structure explain why fauna responded differently to eelgrass fringes and flats. We instead attribute these different responses to underlying differences between fringes and flats in within-habitat heterogeneity and connectivity to deeper habitats, as well as species-specific responses to greater edge/interior ratios in fringing beds. Our study shows that topographic and seascape heterogeneity as well as habitat connectivity may play key roles in the value of nearshore estuarine habitats for nekton in the Northeast Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bates D., Maechler M., Bolker B., Walker S. 2015. lme4: linear mixed-effects models using Eigen and S4 (version 1.1–8). Journal of Statistical Software.

  • Berry, H.D., A.T. Sewell, S. Wyllie-Echeverria, B.R. Reeves, T.F. Mumford Jr., J.R. Skalski, R.C. Zimmerman, and J. Archer. 2003. Puget Sound Submerged Vegetation Monitoring Project: 2000–2002 monitoring report. Olympia: Nearshore Habitat Program, Washington State Department of Natural Resources 60pp.

    Google Scholar 

  • Blandon, A., and P.S.E.Z. Ermgassen. 2014. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia (vol 141, pg 1, 2014). Estuarine Coastal and Shelf Science 151: 370–370. https://doi.org/10.1016/j.ecss.2014.10.006.

    Article  Google Scholar 

  • Bostrom, C., S.J. Pittman, C. Simenstad, and R.T. Kneib. 2011. Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Marine Ecology Progress Series 427: 191–217. https://doi.org/10.3354/meps09051.

    Article  Google Scholar 

  • Canion, C.R., and K.L. Heck. 2009. Effect of habitat complexity on predation success: re-evaluating the current paradigm in seagrass beds. Marine Ecology Progress Series 393: 37–46. https://doi.org/10.3354/meps08272.

    Article  Google Scholar 

  • Clarke, K.R., and R.M. Warwick. 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd ed. Plymouth: PRIMER-E 172pp.

    Google Scholar 

  • Connolly, R.M., and J.S. Hindell. 2006. Review of nekton patterns and ecological processes in seagrass landscapes. Estuarine Coastal and Shelf Science 68 (3-4): 433–444. https://doi.org/10.1016/j.ecss.2006.01.023.

    Article  Google Scholar 

  • De Angelo, J.A., P.W. Stevens, D.A. Blewett, and T.S. Switzer. 2014. Fish assemblages of shoal- and shoreline-associated seagrass beds in eastern Gulf of Mexico estuaries. Transactions of the American Fisheries Society 143 (4): 1037–1048. https://doi.org/10.1080/00028487.2014.911209.

    Article  Google Scholar 

  • Dowty, P., B. Reeves, H. Berry, S. Wyllie-Echeverria, T. Mumford, A. Sewell, P. Milos, and R. Wright. 2005. Puget Sound Submerged Vegetation Monitoring Project 2003–2004 Monitoring Report. Olympia: Washington Department of Natural Resources.

    Google Scholar 

  • Ferraro, S.P., and F.A. Cole. 2010. Ecological periodic tables for nekton usage of four US Pacific northwest estuarine habitats. Canadian Journal of Fisheries and Aquatic Sciences 67 (12): 1957–1967. https://doi.org/10.1139/f10-114.

    Article  Google Scholar 

  • Francour, P. 1997. Fish assemblages of Posidonia oceanica beds at Port Cros (France, NW Mediterranean): assessment of composition and long-term fluctuations by visual census. Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I 18 (2): 157–173. https://doi.org/10.1111/j.1439-0485.1997.tb00434.x.

    Article  Google Scholar 

  • Good, T.P., J.A. June, M.A. Etnier, and G. Broadhurst. 2010. Derelict fishing nets in Puget Sound and the Northwest Straits: patterns and threats to marine fauna. Marine Pollution Bulletin 60 (1): 39–50. https://doi.org/10.1016/j.marpolbul.2009.09.005.

    Article  CAS  Google Scholar 

  • Gorman, A.M., R.S. Gregory, and D.C. Schneider. 2009. Eelgrass patch size and proximity to the patch edge affect predation risk of recently settled age 0 cod (Gadus). Journal of Experimental Marine Biology and Ecology 371 (1): 1–9. https://doi.org/10.1016/j.jembe.2008.12.008.

    Article  Google Scholar 

  • Gross, C., C. Donoghue, C. Pruitt, A.C. Trimble, and J.L. Ruesink. 2017. Taxonomic and functional assessment of mesopredator diversity across an estuarine habitat mosaic. Ecosphere 8 (4): 13. https://doi.org/10.1002/ecs2.1792.

    Article  Google Scholar 

  • Gross, C., C. Donoghue, C. Pruitt, and J.L. Ruesink. 2018. Habitat use patterns and edge effects across a seagrass-unvegetated ecotone depend on species-specific behaviors and sampling methods. Marine Ecology Progress Series 598: 21–33. https://doi.org/10.3354/meps12609.

    Article  Google Scholar 

  • Heck, K.L., K.W. Able, M.P. Fahay, and C.T. Roman. 1989. Fishes and decapod crustaceans of Cape Cod eelgrass meadows—species composition, seasonal abundance patterns and comparison with unvegetated substrates. Estuaries 12 (2): 59–65. https://doi.org/10.2307/1351497.

    Article  Google Scholar 

  • Heithaus, M.R. 2004. Fish communities of subtropical seagrass meadows and associated habitats in Shark Bay, Western Australia. Bulletin of Marine Science 75: 79–99.

    Google Scholar 

  • Hemery, L.G., and S.K. Henkel. 2015. Patterns of benthic mega-invertebrate habitat associations in the Pacific Northwest continental shelf waters. Biodiversity and Conservation 24 (7): 1691–1710. https://doi.org/10.1007/s10531-015-0887-7.

    Article  Google Scholar 

  • Henderson, C.J., B. Gilby, S.Y. Lee, and T. Stevens. 2017. Contrasting effects of habitat complexity and connectivity on biodiversity in seagrass meadows. Marine Biology 164 (5): 9. https://doi.org/10.1007/s00227-017-3149-2.

    Article  Google Scholar 

  • Hensgen, G.M., G.J. Holt, S.A. Holt, J.A. Williams, and G.W. Stunz. 2014. Landscape pattern influences nekton diversity and abudance in seagrass meadows. Marine Ecology Progress Series 507: 139–152. https://doi.org/10.3354/meps10818.

    Article  Google Scholar 

  • Holmer, M., S. Baden, C. Bostrom, and P.O. Moksnes. 2009. Regional variation in eelgrass (Zostera marina) morphology, production and stable sulfur isotopic composition along the Baltic Sea and Skagerrak coasts. Aquatic Botany 91 (4): 303–310. https://doi.org/10.1016/j.aquabot.2009.08.004.

    Article  CAS  Google Scholar 

  • Holsman, K.K., P.S. Mcdonald, and D.A. Armstrong. 2006. Intertidal migration and habitat use by subadult Dungeness crab Cancer magister in a NE Pacific estuary. Marine Ecology Progress Series 308: 183–195. https://doi.org/10.3354/meps308183.

    Article  Google Scholar 

  • Hori, M., T. Suzuki, Y. Monthum, T. Srisombat, Y. Tanaka, M. Nakaoka, and H. Mukai. 2009. High seagrass diversity and canopy-height increase associated fish diversity and abundance. Marine Biology 156 (7): 1447–1458. https://doi.org/10.1007/s00227-009-1184-3.

    Article  Google Scholar 

  • Horinouchi, M. 2007. Review of the effects of within-patch scale structural complexity on seagrass fishes. Journal of Experimental Marine Biology and Ecology 350 (1-2): 111–129. https://doi.org/10.1016/j.jembe.2007.06.015.

    Article  Google Scholar 

  • Howe, E.R., and C.A. Simenstad. 2015. Using stable isotopes to discern mechanisms of connectivity in estuarine detritus-based food webs. Marine Ecology Progress Series 518: 13–29. https://doi.org/10.3354/meps11066.

    Article  Google Scholar 

  • Hughes, J.E., L.A. Deegan, J.C. Wyda, M.J. Weaver, and A. Wright. 2002. The effects of eelgrass habitat loss on estuarine fish communities of southern New England. Estuaries 25 (2): 235–249. https://doi.org/10.1007/bf02691311.

    Article  Google Scholar 

  • Hughes, B.B., M.D. Levey, J.A. Brown, M.C. Fountain, A.B. Carlisle, S.Y. Litvin, C.M. Greene, W.N. Heady, and M.G. Gleason. 2014. Nursery functions of U.S. west coast estuaries: the state of knowledge for juveniles of focal invertebrate and fish species. Arlington: The Nature Conservancy 168pp.

    Google Scholar 

  • Hyndes, G.A., A.J. Kendrick, L.D. MacArthur, and E. Stewart. 2003. Differences in the species- and size-composition of fish assemblages in three distinct seagrass habitats with differing plant and meadow structure. Marine Biology 142 (6): 1195–1206. https://doi.org/10.1007/s00227-003-1010-2.

    Article  Google Scholar 

  • Irlandi, E.A. 1994. Large-scale and small-scale effects of habitat structure on rates of predation—how percent coverage of seagrass affects rates of predation and siphon nipping on an infaunal bivalve. Oecologia 98 (2): 176–183. https://doi.org/10.1007/bf00341470.

    Article  CAS  Google Scholar 

  • Jackson, E.L., M.J. Attrill, and M.B. Jones. 2006. Habitat characteristics and spatial arrangement affecting the diversity of fish and decapod assemblages of seagrass (Zostera marina) beds around the coast of Jersey (English Channel). Estuarine Coastal and Shelf Science 68 (3-4): 421–432. https://doi.org/10.1016/j.ecss.2006.01.024.

    Article  Google Scholar 

  • Jaxion-Harm, J., and M.R. Speight. 2012. Algal cover in mangroves affects distribution and predation rates by carnivorous fishes. Journal of Experimental Marine Biology and Ecology 414: 19–27. https://doi.org/10.1016/j.jembe.2012.01.007.

    Article  Google Scholar 

  • Keller, M., and S.W. Harris. 1966. Growth of eelgrass in relation to tidal depth. Journal of Wildlife Management 30 (2): 280. https://doi.org/10.2307/3797815.

    Article  Google Scholar 

  • Lefcheck, J.S., S.R. Marion, A.V. Lombana, and R.J. Orth. 2016. Faunal communities are invariant to fragmentation in experimental seagrass landscapes. PLoS One 11 (5): 24. https://doi.org/10.1371/journal.pone.0156550.

    Article  CAS  Google Scholar 

  • Macarthur, L.D., and G.A. Hyndes. 2001. Differential use of seagrass assemblages by a suite of odacid species. Estuarine Coastal and Shelf Science 52 (1): 79–90. https://doi.org/10.1006/ecss.2000.0728.

    Article  Google Scholar 

  • Macarthur, R., and J.W. Macarthur. 1961. On bird species-diversity. Ecology 42 (3): 594–598. https://doi.org/10.2307/1932254.

    Article  Google Scholar 

  • Macreadie, Peter I., Hindell, Jeremy S., Keough, Michael J., Jenkins, Gregory P., Connolly, Rod M. 2010. Resource distribution influences positive edge effects in a seagrass fish. Ecology 91 (7):2013–2021

    Article  Google Scholar 

  • Nanjo, K., H. Kohno, Y. Nakamura, M. Horinouchi, and M. Sano. 2014. Effects of mangrove structure on fish distribution patterns and predation risks. Journal of Experimental Marine Biology and Ecology 461: 216–225. https://doi.org/10.1016/j.jembe.2014.08.014.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R.B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. 2015. vegan: Community Ecology Package (version 2.2–1).

  • Olds, A.D., R.M. Connolly, K.A. Pitt, and P.S. Maxwell. 2012. Primacy of seascape connectivity effects in structuring coral reef fish assemblages. Marine Ecology Progress Series 462: 191–203. https://doi.org/10.3354/meps09849.

    Article  Google Scholar 

  • Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. Bioscience 56 (12): 987–996. https://doi.org/10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2.

  • Peterson, C.H. 1991. Intertidal zonation of marine invertebrates in sand and mud. American Scientist 79: 236–249.

    Google Scholar 

  • Pfeifer, M., V. Lefebvre, C.A. Peres, C. Banks-Leite, O.R. Wearn, C.J. Marsh, S.H.M. Butchart, V. Arroyo-Rodriguez, J. Barlow, A. Cerezo, L. Cisneros, N. D'cruze, D. Faria, A. Hadley, S.M. Harris, B.T. Klingbeil, U. Kormann, L. Lens, G.F. Medina-Rangel, J.C. Morante-Filho, P. Olivier, S.L. Peters, A. Pidgeon, D.B. Ribeiro, C. Scherber, L. Schneider-Maunoury, M. Struebig, N. Urbina-Cardona, J.I. Watling, M.R. Willig, E.M. Wood, and R.M. Ewers. 2017. Creation of forest edges has a global impact on forest vertebrates. Nature 551 (7679): 187–191. https://doi.org/10.1038/nature24457.

    Article  CAS  Google Scholar 

  • R Core Team. 2015. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Ribeiro, C., A.J. Almeida, R. Araujo, M. Biscoito, and M. Freitas. 2005. Fish assemblages of Cais do Carvao Bay (Madeira Island) determined by the visual census technique. Journal of Fish Biology 67 (6): 1568–1584. https://doi.org/10.1111/j.1095-8649.2005.00861.x.

    Article  Google Scholar 

  • Short, F.T., and S. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses. Environmental Conservation 23 (01): 17–27.

    Article  Google Scholar 

  • Short, F.T., B. Polidoro, S.R. Livingstone, K.E. Carpenter, S. Bandeira, J.S. Bujang, H.P. Calumpong, T.J.B. Carruthers, R.G. Coles, W.C. Dennison, P.L.A. Erftemeijer, M.D. Fortes, A.S. Freeman, T.G. Jagtap, A.H.M. Kamal, G.A. Kendrick, W.J. Kenworthy, Y.A. La Nafie, I.M. Nasution, R.J. Orth, A. Prathep, J.C. Sanciangco, B. Van Tussenbroek, S.G. Vergara, M. Waycott, and J.C. Zieman. 2011. Extinction risk assessment of the world’s seagrass species. Biological Conservation 144 (7): 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010.

    Article  Google Scholar 

  • Smith, T.M., J.S. Hindell, G.P. Jenkins, and R.M. Connolly. 2008. Edge effects on fish associated with seagrass and sand patches. Marine Ecology Progress Series 359: 203–213. https://doi.org/10.3354/meps07348.

    Article  Google Scholar 

  • Stein, A., K. Gerstner, and H. Kreft. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17 (7): 866–880. https://doi.org/10.1111/ele.12277.

    Article  Google Scholar 

  • Stevens, A.W., and J.R. Lacy. 2012. The influence of wave energy and sediment transport on seagrass distribution. Estuaries and Coasts 35 (1): 92–108. https://doi.org/10.1007/s12237-011-9435-1.

    Article  Google Scholar 

  • Tews, J., U. Brose, V. Grimm, K. Tielborger, M.C. Wichmann, M. Schwager, and F. Jeltsch. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31 (1): 79–92.

    Article  Google Scholar 

  • Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106 (30): 12377–12381. https://doi.org/10.1073/pnas.0905620106.

    Article  Google Scholar 

  • Whitfield, A.K. 2017. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Reviews in Fish Biology and Fisheries 27 (1): 75–110. https://doi.org/10.1007/s11160-016-9454-x.

    Article  Google Scholar 

  • Yang, S., E.E. Wheat, M.J. Horwith, and J.L. Ruesink. 2013. Relative impacts of natural stressors on life history traits underlying resilience of intertidal eelgrass (Zostera marina L.). Estuaries and Coasts 36 (5): 1006–1013. https://doi.org/10.1007/s12237-013-9609-0.

    Article  CAS  Google Scholar 

  • Yeager, L.A., D.A. Keller, T.R. Burns, A.S. Pool, and F.J. Fodrie. 2016. Threshold effects of habitat fragmentation on fish diversity at landscapes scales. Ecology 97 (8): 2157–2166. https://doi.org/10.1002/ecy.1449.

    Article  Google Scholar 

Download references

Acknowledgments

Help in the field was provided by J. Borin, S. Valdez, and P. Markos. We are grateful to the Skokomish Tribe for granting access to their territory and local eelgrass beds. The manuscript was improved by comments from A. T. Lowe, L. Harris, M. S. Turner, J.J. Stachowicz, and three anonymous reviewers.

Funding

This project was supported by Washington Department of Natural Resources through an interagency agreement with the University of Washington (IAA 16-19) and by Washington Sea Grant Program, pursuant to National Oceanic and Atmospheric Administration Award NA14OAR4170078. The views expressed herein are those of the authors and do not necessarily reflect the views of funding agencies or sub-agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collin Gross.

Additional information

Communicated by Masahiro Nakaoka

Electronic Supplementary Material

ESM 1

(DOCX 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, C., Donoghue, C., Pruitt, C. et al. Nekton Community Responses to Seagrass Differ with Shoreline Slope. Estuaries and Coasts 42, 1156–1168 (2019). https://doi.org/10.1007/s12237-019-00556-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00556-8

Keywords

Navigation