Isotopic Variation of Macroinvertebrates and Their Sources of Organic Matter Along an Estuarine Gradient

Abstract

Spatiotemporal patterns in the basal resources fueling the macrobenthic food web of a temperate coastal embayment subject to a low-turbidity riverine discharge (Gwangyang Bay, Korea) were evaluated using carbon and nitrogen stable isotopes. This study examined trophic links of macrobenthic food web with primary production in diverse wetland habitats along the riverine–estuarine–coastal marine continuum. δ13C and δ15N values of macrobenthic assemblages collected along the salinity gradient of the main channel and their putative sources of organic matter (i.e., riverine particulate organic matter (RPOM), Phragmites australis, microphytobenthos (MPB), phytoplankton, and Zostera marina) were determined. A permutational analysis of variance test showed seasonal uniformity in the isotopic niches of the macrobenthic community within different channel locations. In contrast, isotopic nestedness calculated for the microbenthic community emphasized clearly different trends in its isotopic niches among locations. The δ13C values of phytoplankton, suspended and sedimentary organic matter, and macrobenthic community displayed a consistently positive relationship with salinity, characterizing an important contribution of local phytoplankton to the nutrition of macrobenthic community. The isotope mixing model revealed that Phragmites-derived organic matter contributed considerably to the nutrition in the estuarine channel, whereas MPB and Zostera provided trophic subsidies to the deep bay and offshore communities. The nutritional importance of RPOM was minimal at all sites. Overall results suggest that phytoplankton production is a major nutritional contributor to the macrobenthic community in the main channel and that trapping POM originated from neighboring wetlands leads to a longitudinal isotopic niche shift in the macrobenthic community.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abrantes, K.G., A. Barnett, T.R. Marwick, and S. Bouillon. 2013. Importance of terrestrial subsidies for estuarine food webs in contrasting East African catchments. Ecosphere 4: 1–33.

    Google Scholar 

  2. Anderson, M.J., R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth, UK: PRIMER-E.

    Google Scholar 

  3. Bouillon, S., F. Dahdouh-Guebas, A.V.V.S. Rao, N. Koedam, and F. Dehairs. 2003. Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495 (1/3): 33–39.

    CAS  Google Scholar 

  4. Bouillon, S., R.M. Connolly, and D.P. Gillikin. 2011. Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. In Treatise on estuarine and coastal science, ed. E. Wolanski and D.S. McLusky, vol. 7, 143–173. Waltham: Academic Press.

    Google Scholar 

  5. Calizza, E., M.L. Costantini, P. Carlino, F. Bentivoglio, L. Orlandi, and L. Rossi. 2013. Posidonia oceanica habitat loss and changes in litter-associated biodiversity organization: a stable isotope based preliminary study. Estuarine, Coastal and Shelf Science 135: 137–145.

    CAS  Google Scholar 

  6. Canuel, E.A., J.E. Cloern, D.B. Ringelberg, J.B. Guckert, and G.H. Rau. 1995. Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. Limnology and Oceanography 40 (1): 67–81.

    CAS  Google Scholar 

  7. Chanton, J.P., and F.G. Lewis. 1999. Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida. Estuaries 22 (3): 575–583.

    CAS  Google Scholar 

  8. Chen, M., D. Kim, H. Liu, and C.K. Kang. 2018. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in Gwangyang Bay of the southern coast of the Korean Peninsula. Biogeosciences 15 (7): 2055–2073.

    CAS  Google Scholar 

  9. Choi, J.W., S. Hyun, and M. Chang. 2003. The summer benthic environmental conditions assessed by the functional groups of macrobenthic fauna in Gwangyang Bay, southern coast of Korea. Korean Journal of Environmental Biology 21: 101–113.

    Google Scholar 

  10. Choy, E.J., S. An, and C.K. Kang. 2008. Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea). Estuarine, Coastal and Shelf Science 78 (1): 215–226.

    Google Scholar 

  11. Choy, E.J., P. Richard, K.R. Kim, and C.K. Kang. 2009. Quantifying the trophic base for benthic secondary production in the Nakdong River estuary of Korea using stable C and N isotopes. Journal of Experimental Marine Biology and Ecology 382 (1): 18–26.

    CAS  Google Scholar 

  12. Cifuentes, L.A., L.E. Schemel, and J.H. Sharp. 1990. Qualitative and numerical analyses of the effects of river inflow variations on mixing diagrams in estuaries. Estuarine, Coastal and Shelf Science 30 (4): 411–427.

    CAS  Google Scholar 

  13. Cloern, J.E., E.A. Canuel, and S.M. Wienke. 1993. Particulate organic matter in the San Francisco Bay estuary, California; chemical indicators of its origin and assimilation into the benthic food web. In US Geological Survey open-file report, 93–146. Menlo Park: US Geological Survey.

    Google Scholar 

  14. Cloern, J.E., E.A. Canuel, and D. Harris. 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and Oceanography 47 (3): 713–729.

    CAS  Google Scholar 

  15. Connolly, R.M., D. Gorman, and M.A. Guest. 2005. Movement of carbon among estuarine habitats and its assimilation by invertebrates. Oecologia 144 (4): 684–691.

    Google Scholar 

  16. Connolly, R.M., T.A. Schlacher, and T.F. Gaston. 2009. Stable isotope evidence for trophic subsidy of coastal benthic fisheries by river discharge plumes off small estuaries. Marine Biology Research 5 (2): 164–171.

    Google Scholar 

  17. Cucherousset, J., and S. Villéger. 2015. Quantifying the multiple facets of isotopic diversity: new metrics for stable isotope ecology. Ecological Indicators 56: 152–160.

    CAS  Google Scholar 

  18. Currin, C.A., S.Y. Newell, and H.W. Paerl. 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Marine Ecology Progress Series 121: 99–116.

    Google Scholar 

  19. Currin, C.A., S.C. Wainright, K.W. Able, M.P. Weinstein, and C.M. Fuller. 2003. Determination of food web support and trophic position of the mummichog, Fundulus heteroclitus, in New Jersey smooth cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes. Estuaries 26 (2): 495–510.

    Google Scholar 

  20. Day, J.W., Jr., A. Yáñez-Arancibia, W.M. Kemp, and B.C. Crump. 2013. Introduction to estuarine ecology. In Estuarine ecology, ed. J.W. Day, B.C. Crump, W.M. Kemp, and A. Yáñez-Arancibia, 2nd ed., 1–18. Hoboken: Wiley-Blackwell.

    Google Scholar 

  21. Deegan, L.A., and R.H. Garritt. 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31–47.

    Google Scholar 

  22. Doi, H., M. Matsumasa, T. Toya, N. Satoh, C. Mizota, Y. Maki, and E. Kikuchi. 2005. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: carbon and nitrogen stable isotope analyses. Estuarine, Coastal and Shelf Science 64 (2-3): 316–322.

    Google Scholar 

  23. Elliot, M., and A.K. Whitfield. 2011. Challenging paragigms in estuarine ecology and management. Estuarine, Coastal and Shelf Science 94 (4): 306–314.

    Google Scholar 

  24. Fogel, M.L., L.A. Cifuentes, D.J. Velinsky, and J.H. Sharp. 1992. Relationship of carbon availability in estuarine phytoplankton to isotopic composition. Marine Ecology Progress Series 82: 291–300.

    CAS  Google Scholar 

  25. Fourqurean, J.W., T.O. Moore, B. Fry, and J.T. Hollibaugh. 1997. Spatial and temporal variation in C: N: P ratios, δ15N, and δ13C of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA. Marine Ecology Progress Series 157: 147–157.

    CAS  Google Scholar 

  26. Fry, B. 2002. Conservative mixing of stable isotopes across estuarine salinity gradients: a conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries and Coasts 25 (2): 264–271.

    Google Scholar 

  27. Fry, B., and P.L. Parker. 1979. Animal diet in Texas seagrass meadows: δ13C evidence for the importance of benthic plants. Estuarine, Coastal and Shelf Science 8 (6): 499–510.

    CAS  Google Scholar 

  28. Gratton, C., and R.F. Denno. 2006. Arthropod food web restoration following removal of an invasive plant. Ecological Applications 16 (2): 622–631.

    Google Scholar 

  29. Guest, M.A., R.M. Connolly, and N.R. Loneragan. 2004. Carbon movement and assimilation by invertebrates in estuarine habitats occurring at a scale of metres. Marine Ecology Progress Series 278: 27–34.

    CAS  Google Scholar 

  30. Haines, E.B. 1979. Interactions between Georgia salt marshes and coastal waters: a changing paradigm. In Ecological processes in coastal and marine systems, ed. R.J. Livingston, 35–46. New York: Plenum Press.

    Google Scholar 

  31. Hong, S.Y., K.Y. Park, and C.W. Park. 2006. Marine invertebrates in Korean coasts. Seoul: Academy.

    Google Scholar 

  32. Howe, E.R., and C.A. Simenstad. 2015. Using stable isotopes to discern mechanisms of connectivity in estuarine detritus-based food webs. Marine Ecology Progress Series 518: 13–29.

    Google Scholar 

  33. Hughes, E.H., and E.B. Sherr. 1983. Subtidal food webs in a Georgia estuary: δ13C analysis. Journal of Experimental Marine Biology and Ecology 67 (3): 227–242.

    Google Scholar 

  34. Hyndes, G.A., and P.S. Lavery. 2005. Does transported seagrass provide an important trophic link in unvegetated, nearshore areas? Estuarine, Coastal and Shelf Science 63 (4): 633–643.

    CAS  Google Scholar 

  35. Incze, L.S., L.M. Mayer, E.B. Sherr, and S.A. Macko. 1982. Carbon inputs to bivalve mollusks: a comparison of two estuaries. Canadian Journal of Fisheries and Aquatic Science. 39 (10): 1348–1352.

    Google Scholar 

  36. Jackson, A.L., R. Inger, A.C. Parnell, and S. Bearhop. 2011. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. The Journal of Animal Ecology 80 (3): 595–602.

    Google Scholar 

  37. Jumars, P.A., K.M. Dorgan, and S.M. Lindsay. 2015. Diet of worms emended: an update of polychaete feeding guilds. Annual Review of Marine Science 7 (1): 497–520.

    Google Scholar 

  38. Kang, C.K., J.B. Kim, J.B. Kim, P.Y. Lee, and J.S. Hong. 2001. The importance of intertidal benthic autotrophs to the Kwangyang Bay (Korea) food webs: δ13C analysis. Journal of Korean Society Oceanography 36: 109–123.

    Google Scholar 

  39. Kang, C.K., J.B. Kim, K.S. Lee, J.B. Kim, P.Y. Lee, and J.S. Hong. 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Marine Ecology Progress Series 259: 79–92.

    CAS  Google Scholar 

  40. Kang, C.K., Y.W. Lee, E.J. Choy, J.K. Shin, I.S. Seo, and J.S. Hong. 2006. Microphytobenthos seasonality determines growth and reproduction in intertidal bivalves. Marine Ecology Progress Series 315: 113–127.

    Google Scholar 

  41. Kang, C.K., E.J. Choy, S.K. Paik, H.J. Park, K.S. Lee, and S. An. 2007. Contributions of primary organic matter sources to macroinvertebrate production in an intertidal salt marsh (Scirpus triqueter) ecosystem. Marine Ecology Progress Series 334: 131–143.

    CAS  Google Scholar 

  42. Kang, S.H., J.H. Lee, S.W. Park, and H.C. Shin. 2014. Temporal and spatial distribution of benthic polychaetous communities in Seomjin River Estuary. Journal of Korean Society Oceanography 19: 243–255.

    Google Scholar 

  43. Kang, C.K., H.J. Park, E.J. Choy, K.S. Choi, K. Hwang, and J.B. Kim. 2015. Linking intertidal and subtidal food webs: consumer-mediated transport of intertidal benthic microalgal carbon. PLoS One 10 (10): e0139802.

    Google Scholar 

  44. Kim, Y.H., and H.C. Shin. 2010. A benthic polychaete assemblage off the Korean south coast (Gwangyang Bay and Yeosu Sound). Fisheries and Aquatic Sciences 13 (2): 157–166.

    Google Scholar 

  45. Kim, D.H., H.S. Cho, and Y.S. Lee. 2005. The characteristic of point source loads for nitrogen and phosphorus to Gwangyang Bay, Korea. Journal of Korean Society for Marine Environmental Engineering 8: 1–8.

    Google Scholar 

  46. Kim, J.B., J.I. Park, W.J. Choi, J.S. Lee, and K.S. Lee. 2010. Spatial distribution and ecological characteristics of Zostera marina and Zostera japonica in the Seomjin Estuary. Korean Journal of Fisheries and Aquatic Sciences 43 (4): 351–361.

    Google Scholar 

  47. Kim, B.J., Y.J. Ro, K.Y. Jung, and K.S. Park. 2014. Numerical modeling of circulation characteristics in the Kwangyang Bay estuarine system. Journal of Korean Society Coastal and Ocean Engineers 26 (4): 253–266.

    Google Scholar 

  48. King, J.W., J.B. Hubeny, C.L. Gibson, E. Laliberte, K.H. Ford, M. Cantwell, R. McKinney, and P. Appleby. 2008. Anthropogenic eutrophication of Narragansett Bay: evidence from dated sediment cores. In Science for ecosystem-based management, 211–232. Manhattan: Springer.

    Google Scholar 

  49. Kneib, R.T. 2002. Salt marsh ecospaces and production transfers by estuarine nekton in the southeastern United States. In Concepts and controversies in tidal marsh ecology, ed. M.P. Weinstein and D.A. Kreeger, 267–291. New York: Kluwer Academic Publishers.

    Google Scholar 

  50. Knox, G.A. 1986. Estuarine ecosystems: a systems approach. Boca Raton: CRC Press Inc..

    Google Scholar 

  51. Kwon, K.Y., C.H. Moon, and H.S. Yang. 2001. Behavior of nutrients along the salinity gradients in the Seomjin River estuary. Journal of the Korean Society of Fisheries 34: 199–206.

    CAS  Google Scholar 

  52. Kwon, K.Y., C.H. Moon, C.K. Kang, and Y.N. Kim. 2002. Distribution of particulate organic matters along the salinity gradients in the Seomjin River estuary. Korean Journal of Fisheries and Aquatic Sciences 35 (1): 86–96.

    CAS  Google Scholar 

  53. Layman, C.A., D.A. Arrington, C.G. Montaña, and D.M. Post. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88 (1): 42–48.

    Google Scholar 

  54. Layman, C.A., M.S. Araujo, R. Boucek, C.M. Hammerschlag-Peyer, E. Harrison, Z.R. Jud, P. Matich, A.E. Rosenblatt, J.J. Vaudo, L.A. Yeager, D.M. Post, and S. Bearhop. 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews 87 (3): 545–562.

    Google Scholar 

  55. Lebreton, B., P. Richard, R. Galois, G. Radenac, C. Pfléger, G. Guillou, F. Mornet, and G.F. Blanchard. 2011. Trophic importance of diatoms in an intertidal Zostera noltii seagrass bed: evidence from stable isotope and fatty acid analyses. Estuarine, Coastal and Shelf Science 92 (1): 140–153.

    CAS  Google Scholar 

  56. Lee, S.Y. 1995. Mangrove outwelling: a review. Hydrobiologia 295 (1-3): 203–212.

    Google Scholar 

  57. Lucas, L.V., J.R. Koseff, J.E. Cloern, S.G. Monismith, and J.K. Thompson. 1999. Processes governing phytoplankton blooms in estuaries. I: the local production-loss balance. Marine Ecology Progress Series 187: 1–15.

    Google Scholar 

  58. McCutchan, J.H., Jr., W.M. Lewis Jr., C. Kendall, and C.C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulphur. Oikos 102 (2): 378–390.

    CAS  Google Scholar 

  59. McLusky, D.S. 1989. The estuarine ecosystem. 2nd ed. New York: Chapman & Hall.

    Google Scholar 

  60. Melville, A.J., and R.M. Connolly. 2005. Food webs supporting fish over subtropical mudflats are based on transported organic matter not in situ microalgae. Marine Biology 148 (2): 363–371.

    Google Scholar 

  61. Michener, R.H., and D.M. Schell. 1994. Stable isotope ratios as tracers in marine aquatic food webs. In Stable isotopes in ecology and environmental science, ed. K. Lajtha and R.H. Michener, 138–157. Hoboken: Blackwell Scientific Publications.

    Google Scholar 

  62. Min, J.O., S.Y. Ha, B.H. Choi, M.H. Chung, W.D. Youn, J.S. Lee, and K.H. Shin. 2011. Primary productivity and pigments variation of phytoplankton in the Seomjin River estuary during rainy season in summer. Korean Journal of Limnology 44: 303–313.

    Google Scholar 

  63. Min, J.O., S.Y. Ha, M.H. Chung, B.H. Choi, Y.J. Lee, W.D. Youn, J.S. Lee, and K.H. Shin. 2012. Seasonal variation of primary productivity and pigment of phytoplankton community structure in the Seomjin Estuary. Korean Journal of Limnology 45: 139–149.

    Google Scholar 

  64. Moncreiff, C.A., and M.J. Sullivan. 2001. Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses. Marine Ecology Progress Series 215: 93–106.

    CAS  Google Scholar 

  65. Mook, W.G., and F.C. Tan. 1991. Stable carbon isotopes in rivers and estuaries. In Biogeochemistry of major world rivers, ed. E.T. Degens, S. Kempe, and J.E. Richey, 245–264. New York: Wiley.

    Google Scholar 

  66. Odum, E.P. 1980. The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, outwelling, and detritus-based food chains. In Estuarine perspectives, ed. V.S. Kennedy, 485–495. New York: Academic Press.

    Google Scholar 

  67. Page, H.M. 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuarine, Coastal and Shelf Science 45 (6): 823–834.

    Google Scholar 

  68. Park, H.J., E.J. Choy, K.S. Lee, and C.K. Kang. 2013. Trophic transfer between coastal habitats in a seagrass-dominated macrotidal embayment system as determined by stable isotope and fatty acid signatures. Marine and Freshwater Research 64 (12): 1169–1183.

    Google Scholar 

  69. Park, H.J., J.H. Kwak, and C.K. Kang. 2015. Trophic consistency of benthic invertebrates among diversified vegetational habitats in a temperate coastal wetland of Korea as determined by stable isotopes. Estuaries and Coasts 38 (2): 599–611.

    CAS  Google Scholar 

  70. Park, H.J., E. Han, Y.J. Lee, and C.K. Kang. 2016a. Trophic linkage of a temperate intertidal macrobenthic food web under opportunistic macroalgal blooms: a stable isotope approach. Marine Pollution Bulletin 111 (1-2): 86–94.

    CAS  Google Scholar 

  71. Park, S.R., S. Kim, Y.K. Kim, C.K. Kang, and K.S. Lee. 2016b. Photoacclimatory responses of Zostera marina in the intertidal and subtidal zones. PLoS One 11 (5): e0156214.

    Google Scholar 

  72. Park, H.J., H.Y. Kang, T.H. Park, and C.K. Kang. 2017. Comparative trophic structures of macrobenthic food web in two macrotidal wetlands with and without a dike on the temperate coast of Korea as revealed by stable isotopes. Marine Environmental Research 131: 134–145.

    CAS  Google Scholar 

  73. Pearl, H.W., and D. Justic. 2013. Estuarine phytoplankton. In Estuarine ecology, ed. J.W. Day, B.C. Crump, W.M. Kemp, and A. Yáñez-Arancibia, 2nd ed., 85–110. Hoboken: Wiley-Blackwell.

    Google Scholar 

  74. Peterson, B.J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology, Evolution, and Systematics 18 (1): 293–320.

    Google Scholar 

  75. Peterson, B.J., R.W. Howarth, and R.H. Garritt. 1985. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227 (4692): 1361–1363.

    CAS  Google Scholar 

  76. Phillips, D.L., and J.W. Gregg. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136 (2): 261–269.

    Google Scholar 

  77. Polis, G.A., W.B. Anderson, and R.D. Holt. 1997. Toward an integration of landscape and food web ecology the dynamics of spatially subsidized food webs. Annual Review of Ecology, Evolution, and Systematics 28 (1): 289–316.

    Google Scholar 

  78. Quillien, N., M.C. Nordsröm, G. Schaal, E. Bonsdorff, and J. Grall. 2016. Opportunistic basal resource simplifies food web structure and functioning of a highly dynamic marine environment. Journal of Experimental Marine Biology and Ecology 477: 92–102.

    Google Scholar 

  79. Riera, P., and P. Richard. 1996. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Ol éron. Estuarine, Coastal and Shelf Science 42 (3): 347–360.

    Google Scholar 

  80. Rozas, L.P., C.C. McIvor, and W.E. Odum. 1988. Intertidal rivulets and creek banks: corridors between tidal creeks and marshes. Marine Ecology Progress Series 47: 303–307.

    Google Scholar 

  81. Ruppert, E.E., R.S. Fox, and R.D. Barnes. 2004. Invertebrate zoology. 7th ed. Belmont: Thomson.

    Google Scholar 

  82. Schaal, G., P. Riera, and C. Leroux. 2008. Trophic coupling between two adjacent benthic food webs within a man-made intertidal area: a stable isotopes evidence. Estuarine, Coastal and Shelf Science 77: 523–534.

    Google Scholar 

  83. Seo, J.Y., J.H. Kim, and J.W. Choi. 2017. Spatial distribution of macrozoobenthic communities in the Seomjin River estuary. Ocean and Polar Research 39 (1): 23–34.

    Google Scholar 

  84. Shaha, D.C., Y.K. Cho, T.W. Kim, and A. Valle-Levinson. 2012. Spatio-temporal variation of flushing time in the Sumjin River estuary. Terrestrial, Atmospheric and Oceanic Sciences 23 (1): 119–130.

    Google Scholar 

  85. Sullivan, M.J., and C.A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food webs: evidence from multiple stable isotope analyses. Marine Ecology Progress Series 62: 149–159.

    Google Scholar 

  86. Sun, Z., X. Mou, and W. Sun. 2016. Potential effects of tidal flat variations on decomposition and nutrient dynamics of Phragmites australis, Suaeda salsa and Suaeda glauca litter in newly created marshes of the Yellow River Estuary, China. Ecological Engineering 93: 175–186.

    Google Scholar 

  87. Teal, J.M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43 (4): 614–624.

    Google Scholar 

  88. Vizzini, S., G. Sara, R.H. Michener, and A. Mazzola. 2002. The role and contribution of the seagrass Posidonia oceanica Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecologica 23 (4): 277–285.

    Google Scholar 

  89. Wainright, S.C., M.P. Weinstein, K.W. Able, and C.A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass Spartina alterniflora and the common reed Phragmites australis to brackish marsh food webs. Marine Ecology Progress Series 200: 77–91.

    CAS  Google Scholar 

  90. Weinstein, M.P., S.Y. Litvin, and V.G. Guida. 2010. Stable isotope and biochemical composition of white perch in a Phragmites dominated salt marsh and adjacent waters. Wetlands 30 (6): 1181–1191.

    Google Scholar 

  91. Wissel, B., and B. Fry. 2005. Tracing Mississippi River influences in estuarine food webs of coastal Louisiana. Oecologia 144 (4): 659–672.

    Google Scholar 

  92. Yang, H.K., and H.C. Choi. 2003. Estimation of water quality environmental in Youngsan and Seumjin River basins. Journal of the Korean Geographical Society 38: 16–31.

    CAS  Google Scholar 

  93. Yang, S.R., H.S. Song, K.C. Kim, C. Park, and C. Moon. 2005. Changes in environmental factors and primary productivity in the Seomjin River estuary. Journal of the Korean Society of Oceanography 10: 164–170.

    Google Scholar 

  94. Yoshino, K., N.K. Tsugeki, Y. Amano, Y. Hayami, H. Hamaoka, and K. Omori. 2012. Intertidal bare mudflats subsidize subtidal production through outwelling of benthic microalgae. Estuarine, Coastal and Shelf Science 109: 138–143.

    CAS  Google Scholar 

  95. Zhang, L., Y. Zhang, J. Zou, and E. Siemann. 2014. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect. Scientific Reports 4: 5488.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was a part of the project titled “Long-term change of structure and function in marine ecosystems of Korea,” funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-Keun Kang.

Electronic Supplementary Material

Supplementary Figure 1

Hierarchical clustering of abundances for macroinvertebrates using Bray–Curtis dissimilarity. Dashed line represents a 20% resemblance level. (PDF 327 kb)

Supplementary Table 1

(DOCX 62 kb)

Supplementary Table 2

(DOCX 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Kang, H.Y., Lee, Y. et al. Isotopic Variation of Macroinvertebrates and Their Sources of Organic Matter Along an Estuarine Gradient. Estuaries and Coasts 43, 496–511 (2020). https://doi.org/10.1007/s12237-019-00543-z

Download citation

Keywords

  • Trophic niche
  • Macrobenthos
  • Low-turbidity
  • Coastal embayment
  • Stable isotopes
  • Food web