Skip to main content
Log in

Seasonal, Interannual, and Longitudinal Patterns in Estuarine Metabolism Derived from Diel Oxygen Data Using Multiple Computational Approaches

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Twenty-three station-years of diel oxygen data for the James River Estuary were analyzed to characterize longitudinal, seasonal, and interannual patterns of gross primary production (GPP) and ecosystem respiration (ER). We compared two commonly used methods for deriving metabolism (bookkeeping and Bayesian) to determine whether the observed patterns were robust with respect to computational methodology. The two methods revealed similar longitudinal patterns of increasing GPP and ER, and decreasing net ecosystem metabolism (NEM), with increasing salinity. Seasonal patterns in GPP and ER tracked water temperature and solar radiation, except during high discharge events when metabolism declined by 40%. The bookkeeping method yielded higher estimates of GPP and ER in the higher end of the range, and smaller estimates in the low end of the range, thereby accentuating seasonal and longitudinal differences. Inferences regarding net autotrophy and heterotrophy were robust, as both methods yielded positive estimates of NEM at the chlorophyll maximum (tidal fresh segment) and negative values for the saline portion of the estuary. Inferences regarding the relative importance of allochthonous inputs (based on inferred ER at GPP = 0) differed between the two methods. Values derived by the bookkeeping method indicated that respiration was largely supported by autochthonous production, whereas the Bayesian results indicated that autochthonous and allochthonous inputs were equally important. Overall, our findings show that methodological differences were small in the context of longitudinal, seasonal, and interannual variation but that the bookkeeping method yielded a wider range of values for GPP and ER relative to the Bayesian estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Appling, A. P., R. O. Hall, M. Arroita, and C. B. Yackulic. 2017. streamMetabolizer: models for estimating aquatic photosynthesis and respiration. R package version 0.9.33. https://github.com/USGS-R/streamMetabolizer.

  • Aristegi, L., O. Izagirre, and A. Elosegi. 2009. Comparison of several methods to calculate reaeration in streams and their effects on estimation of metabolism. Hydrobiologia 635 (1): 113–124.

    Article  CAS  Google Scholar 

  • Beck, M.W., and R.R. Murphy. 2017. Numerical and qualitative contrasts of two statistical models for water quality change in tidal waters. Journal of the American Water Resources Association 53 (1): 197–219.

    Article  CAS  Google Scholar 

  • Berg, P., and M.L. Pace. 2017. Continuous measurement of air-water gas exchange by underwater eddy covariance. Biogeosciences 14 (23): 5595–5606.

    Article  CAS  Google Scholar 

  • Bernhardt, E.S., J.B. Heffernan, N.B. Grimm, E.H. Stanley, J.W. Harvey, et al. 2018. The metabolic regimes of flowing waters. Limnology and Oceanography 63: 99–118.

    Article  Google Scholar 

  • Borges, A.V. 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries and Coasts 28 (1): 3–27.

    Article  CAS  Google Scholar 

  • Bott, T.L., D.S. Montgomery, J.D. Newbold, D.B. Arscott, C.L. Dow, A.K. Aufdenkampe, J.K. Jackson, and L.A. Kaplan. 2006. Ecosystem metabolism in streams of the Catskill Mountains (Delaware and Hudson River watersheds) and Lower Hudson Valley. Journal of the North American Benthological Society 25 (4): 1018–1044.

    Article  Google Scholar 

  • Boynton, W., W. Kemp, and C. Keefe. 1982. Estuarine comparisons: a comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. Estuarine comparisons. New York: Academic.

    Google Scholar 

  • Bricker, S., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner. 2007. Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Silver Spring: NOAA Coastal Ocean Program Decision Analysis (Series 26) National Centers for Coastal Ocean Science.

    Google Scholar 

  • Bruesewitz, D.A., W.S. Gardner, R.F. Mooney, L. Pollard, and E.J. Buskey. 2013. Estuarine ecosystem function response to flood and drought in a shallow, semiarid estuary: nitrogen cycling and ecosystem metabolism. Limnology and Oceanography 58 (6): 2293–2309.

    Article  CAS  Google Scholar 

  • Bukaveckas, P.A., and W.N. Isenberg. 2013. Loading, transformation and retention of nitrogen and phosphorus in the tidal freshwater James River (Virginia). Estuaries and Coasts 36 (6): 1219–1236.

    Article  CAS  Google Scholar 

  • Bukaveckas, P.A., L.E. Barry, M.J. Beckwith, V. David, and B. Lederer. 2011. Factors determining the location of the chlorophyll maximum and the fate of algal production within the tidal freshwater James River. Estuaries and Coasts 34 (3): 569–582.

    Article  CAS  Google Scholar 

  • Bukaveckas, P.A., M. Beck, D. Devore, and W.M. Lee. 2018. Climatic variability and its role in regulating C, N and P retention in the James River Estuary. Estuarine, Coastal and Shelf Science 205: 161–173.

    Article  CAS  Google Scholar 

  • Caffrey, J.M. 2003. Production, respiration and net ecosystem metabolism in U.S. estuaries. Environmental Monitoring and Assessment 81 (1): 207–219.

    Article  Google Scholar 

  • Caffrey, J.M. 2004. Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries and Coasts 27 (1): 90–101.

    Article  CAS  Google Scholar 

  • Caffrey, J.M., M.C. Murrell, K.S. Amacker, J.W. Harper, S. Phipps, and M.S. Woodrey. 2014. Seasonal and inter-annual patterns in primary production, respiration, and net ecosystem metabolism in three estuaries in the northeast Gulf of Mexico. Estuaries and Coasts 37 (S1): 222–241.

    Article  Google Scholar 

  • Carignan, R., A. Blais, and C. Vis. 1998. Measurement of primary production and community respiration in oligotrophic lakes using the Winkler method. Canadian Journal of Fisheries and Aquatic Sciences 55 (5): 1078–1084.

    Article  Google Scholar 

  • Cloern, J.E., S. Foster, and A. Kleckner. 2014. Phytoplankton primary production in the world's estuarine-coastal ecosystems. Biogeosciences 11 (9): 2477–2501.

    Article  Google Scholar 

  • Cole, J.J., N.F. Caraco, and B.L. Peierls. 1992. Can phytoplankton maintain a positive carbon balance in a turbid, freshwater, tidal estuary? Limnology and Oceanography 37 (8): 1608–1617.

    Article  CAS  Google Scholar 

  • Cole, J.J., M.L. Pace, S.R. Carpenter, and J.F. Kitchell. 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography 45 (8): 1718–1730.

    Article  Google Scholar 

  • Collins, J.R., P.A. Raymond, W.F. Bohlen, and M.M. Howard-Strobel. 2013. Estimates of new and total productivity in Central Long Island Sound from in situ measurements of nitrate and dissolved oxygen. Estuaries and Coasts 36 (1): 74–97.

    Article  CAS  Google Scholar 

  • Cory, R. 1974. Changes in oxygen and primary production of the Patuxent estuary, Maryland, 1963 through 1969. Chesapeake Science 15 (2): 78–83.

    Article  CAS  Google Scholar 

  • Crosswell, J.R., M.S. Wetz, B. Hales, and H.W. Paerl. 2012. Air-water CO2 fluxes in the microtidal Neuse River Estuary, North Carolina. Journal of Geophysical Research: Oceans 117 (C8).

  • D'Avanzo, C., J.N. Kremer, and S.C. Wainright. 1996. Ecosystem production and respiration in response to eutrophication in shallow temperate estuaries. Marine Ecology Progress Series 4 (44): 263–274.

    Article  Google Scholar 

  • Deacon, E. 1981. Sea-air gas transfer: the wind speed dependence. Boundary-Layer Meteorology 21 (1): 31–37.

    Article  Google Scholar 

  • del Giorgio, P.A., and R.H. Peters. 1994. Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnology and Oceanography 39 (4): 772–787.

    Article  Google Scholar 

  • Gazeau, F., J. Gattuso, J.J. Middelburg, N. Brion, L. Schiettecatte, M. Frankignoulle, et al. 2005. Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt Estuary). Estuaries and Coasts 28 (6): 868–883.

    Article  CAS  Google Scholar 

  • Grace, M.R., D.P. Giling, S. Hladyz, V. Caron, R.M. Thompson, and R. Mac Nally. 2015. Fast processing of diel oxygen curves: Estimating stream metabolism with BASE (BAyesian Single-station estimation). Limnology and Oceanography: Methods 13 (3): 103–114.

    CAS  Google Scholar 

  • Hall, R.O., J.L. Tank, M.A. Baker, E.J. Rosi-Marshall, and E.R. Hotchkiss. 2016. Metabolism, gas exchange, and carbon spiraling in rivers. Ecosystems 19 (1): 73–86.

    Article  CAS  Google Scholar 

  • Herrmann, M., R. Najjar, W.M. Kemp, R.B. Alexander, E.W. Boyer, W.-J. Cai, P.C. Griffith, K.D. Kroeger, S.L. McCallister, and R.A. Smith. 2015. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries: a synthesis approach. Global Biogeochemical Cycles 29 (1): 96–111.

    Article  CAS  Google Scholar 

  • Ho, D.T., P. Schlosser, and P.M. Orton. 2011. On factors controlling air-water gas exchange in a large tidal river. Estuaries and Coast 34 (6): 1103–1116.

    Article  CAS  Google Scholar 

  • Hobbs, N.T., and M.B. Hooten. 2015. Bayesian models: a statistical primer for ecologists. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Hoellein, T.J., D.A. Bruesewitz, and D.C. Richardson. 2013. Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnology and Oceanography 58 (6): 2089–2100.

    Article  CAS  Google Scholar 

  • Holtgrieve, G.W., D.E. Schindler, T.A. Branch, and Z.T. A'mar. 2010. Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics. Limnology and Oceanography 55 (3): 1047–1063.

    Article  CAS  Google Scholar 

  • Hopkinson, C., and E.M. Smith. 2005. Estuarine respiration: an overview of benthic, pelagic, and whole system respiration. In Respiration in aquatic ecosystems, 122–146. New York: Academic.

    Chapter  Google Scholar 

  • Houser, J.N., L.A. Bartsch, W.B. Richardson, J.T. Rogala, and J.F. Sullivan. 2015. Ecosystem metabolism and nutrient dynamics in the main channel and backwaters of the upper Mississippi River. Freshwater Biology 60 (9): 1863–1879.

    Article  CAS  Google Scholar 

  • Jähne, B., K.O. Münnich, R. Bösinger, A. Dutzi, W. Huber, and P. Libner. 1987. On the parameters influencing air-water gas exchange. Journal of Geophysical Research:Oceans 92 (C2): 1937–1949.

    Article  Google Scholar 

  • Jassby, A.D., J.E. Cloern, and B.E. Cole. 2002. Annual primary production: patterns and mechanisms of change in a nutrient-rich tidal ecosystem. Limnology and Oceanography 47 (3): 698–712.

    Article  Google Scholar 

  • Kemp, W., E. Smith, M. Marvin-DiPasquale, and W. Boynton. 1997. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay. Marine Ecology Progress Series 150: 229–248.

    Article  CAS  Google Scholar 

  • Lindeman, R.L. 1942. The trophic-dynamic aspect of ecology. Ecology 23 (4): 399–417.

    Article  Google Scholar 

  • Moore, K.A., D. Wilcox, and R.J. Orth. 2000. Analysis of the abundance of submersed aquatic vegetation communities in Chesapeake Bay. Estuaries 23 (1): 115–127.

    Article  Google Scholar 

  • Morton, R., and B.L. Henderson. 2008. Estimation of non-linear trends in water quality: an improved approach using generalized additive models. Water Resources Research 44 (7): W07420.

    Article  CAS  Google Scholar 

  • Murrell, M.C., J.M. Caffrey, D.T. Marcovich, M.W. Beck, B.M. Jarvis, and J.D. Hagy. 2018. Seasonal oxygen dynamics in a warm temperate estuary: effects of hydrologic variability on measurements of primary production, respiration and net metabolism. Estuaries and Coasts 41 (3): 690–707.

    Article  CAS  Google Scholar 

  • Muylaert, K., M. Tackx, and W. Vyverman. 2005. Phytoplankton growth rates in the freshwater tidal reaches of the Schelde Estuary (Belgium) estimated using a simple light-limited primary production model. Hydrobiologia 540 (1-3): 127–140.

    Article  Google Scholar 

  • O’Connor, D., and W. Dobbins. 1958. Mechanism of reaeration in natural streams. Transactions of the American Society of Civil Engineers 123: 641–684.

    Google Scholar 

  • Obrador, B., P.A. Staehr, and J.P.C. Christensen. 2014. Vertical patterns of metabolism in three contrasting stratified lakes. Limnology and Oceanography 59 (4): 1228–1240.

    Article  CAS  Google Scholar 

  • Oczkowski, A., C.W. Hunt, M. Miller, C.A. Oviatt, S.W. Nixon, and L. Smith. 2016. Comparing measures of estuarine ecosystem production in a temperate New England estuary. Estuaries and Coasts 39 (6): 1827–1844.

    Article  Google Scholar 

  • Odum, H.T. 1956. Primary production in flowing waters. Limnology and Oceanography 1 (2): 102–117.

    Article  Google Scholar 

  • Paerl, H.W., K.L. Rossignol, S.N. Hall, B.L. Peierls, and M.S. Wetz. 2010. Phytoplankton community indicators of short-and long-term ecological change in the anthropogenically and climatically impacted Neuse River Estuary, North Carolina, USA. Estuaries and Coasts 33 (2): 485–497.

    Article  CAS  Google Scholar 

  • R Core Team. 2017. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing https://www.R-project.org/.

    Google Scholar 

  • Raymond, P.A., and J.J. Cole. 2001. Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24 (2): 312–317.

    Article  CAS  Google Scholar 

  • Raymond, P.A., J.E. Bauer, and J.J. Cole. 2000. Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River Estuary. Limnology and Oceanography 45 (8): 1707–1717.

    Article  CAS  Google Scholar 

  • Raymond, P.A., C.J. Zappa, D. Butman, T.L. Bott, J. Potter, P. Mulholland, et al. 2012. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnology and Oceanography: Fluids and Environments 2: 41–53.

    Google Scholar 

  • Raymond, P.A., J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, P. Kortelainen, H. Dürr, M. Meybeck, P. Ciais, and P. Guth. 2013. Global carbon dioxide emissions from inland waters. Nature 503 (7476): 355–359.

    Article  CAS  Google Scholar 

  • Richards, R., L. Hughes, D. Gee, and R. Tomlinson. 2013. Using generalized additive models for water quality assessments: a case study example from Australia. Journal of Coastal Research 65: 111–116.

    Article  Google Scholar 

  • Roelke, D.L., H. Li, C.J. Miller-DeBoer, G.M. Gable, and S.E. Davis. 2017. Regional shifts in phytoplankton succession and primary productivity in the San Antonio bay system (USA) in response to diminished freshwater inflows. Marine and Freshwater Research 68 (1): 131–145.

    Article  Google Scholar 

  • Sakamaki, T., J.Y.T. Shum, and J.S. Richardson. 2010. Watershed effects on chemical properties of sediment and primary consumption in estuarine tidal flats: Importance of watershed size and food selectivity by macrobenthos. Ecosystems 11: 328–337.

    Article  CAS  Google Scholar 

  • Sellers, T., and P.A. Bukaveckas. 2003. Phytoplankton production in a large, regulated river: a modeling and mass balance assessment. Limnology and Oceanography 48 (4): 1476–1487.

    Article  Google Scholar 

  • Shen, J., and J. Lin. 2006. Modeling study of the influences of tide and stratification on age of water in the tidal James River. Estuarine, Coastal and Shelf Science 68 (1-2): 101–112.

    Article  Google Scholar 

  • Shen, J., Y. Wang, and M. Sisson. 2016. Development of the hydrodynamic model for long-term simulation of water quality processes of the tidal James River, Virginia. Journal of Marine Science and Engineering 4 (4): 82.

    Article  Google Scholar 

  • Smith, E.M., and W.M. Kemp. 1995. Seasonal and regional variations in plankton community production and respiration for Chesapeake Bay. Marine Ecology Progress Series 116 (1): 217–231.

    Article  Google Scholar 

  • Solomon, C.T., D.A. Bruesewitz, D.C. Richardson, K.C. Rose, M.C. Van de Bogert, P.C. Hanson, et al. 2013. Ecosystem respiration: drivers of daily variability and background respiration in lakes around the globe. Limnology and Oceanography 58 (3): 849–866.

    Article  CAS  Google Scholar 

  • Staehr, P.A., J.M. Testa, W.M. Kemp, J.J. Cole, K. Sand-Jensen, and S.V. Smith. 2012. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquatic Sciences 74 (1): 15–29.

    Article  Google Scholar 

  • Strayer, D.L., M.L. Pace, N.F. Caraco, J.J. Cole, and S.E.G. Findlay. 2008. Hydrology and grazing jointly control a large-river food web. Ecology 89 (1): 12–18.

    Article  Google Scholar 

  • Testa, J.M., W.M. Kemp, C.S. Hopkinson, and S.V. Smith. 2012. Ecosystem metabolism. In In estuarine ecology 381–416. Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Thomann, R.V., and J.A. Mueller. 1987. Principles of surface water quality modeling and control. New York: Harper & Row.

    Google Scholar 

  • Tomaso, D.J., and R.G. Najjar. 2015. Long-term variations in the dissolved oxygen budget of an urbanized tidal river: the upper Delaware Estuary. Journal of Geophysical Research Biogeosciences 120 (6): 1027–1045.

    Article  CAS  Google Scholar 

  • Tranvik, L.J., J.A. Downing, J.B. Cotner, S.A. Loiselle, R.G. Striegl, T.J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L.B. Knoll, P.L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D.M. Leech, S.L. McCallister, D.M. McKnight, J.M. Melack, E. Overholt, J.A. Porter, Y. Prairie, W.H. Renwick, F. Roland, B.S. Sherman, D.W. Schindler, S. Sobek, A. Tremblay, M.J. Vanni, A.M. Verschoor, E. von Wachenfeldt, G.A. Weyhenmeyer, et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54 (6.2): 2298–2314.

    Article  CAS  Google Scholar 

  • USEPA and Region III Chesapeake Bay Program Office. 2005. Chesapeake Bay program analytical segmentation scheme: revisions, decisions and rationales 1983–2003, 2005 addendum. Rep. No. EPA 903-R-05-004, Monitoring and Analysis Subcommittee, and Tidal Monitoring and Analysis Workgroup, Annapolis, Md.

  • Vannote, R.L., G.W. Minshall, K.W. Cummins, J.R. Sedell, and C.E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37 (1): 130–137.

    Article  Google Scholar 

  • Vincent, W.F., J.J. Dodson, N. Bertrand, and J. Frenette. 1996. Photosynthetic and bacterial production gradients in a larval fish nursery: the St. Lawrence River transition zone. Marine Ecology Progress Series 139: 227–238.

    Article  Google Scholar 

  • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research: Oceans 97 (C5): 7373–7382.

    Article  Google Scholar 

  • Winslow, L.A., J.A. Zwart, R.D. Batt, H.A. Dugan, R.I. Woolway, J.R. Corman, P.C. Hanson, and J.S. Read. 2016. LakeMetabolizer: an R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 6 (4): 622–636.

    Article  CAS  Google Scholar 

  • Wood, S.N. 2006. Generalized additive models: an introduction with R. London: Chapman and Hall CRC Press.

    Book  Google Scholar 

  • Wood, J.D., and P.A. Bukaveckas. 2014. Increasing severity of phytoplankton nutrient limitation following reductions in point source inputs to the tidal freshwater segment of the James River Estuary. Estuaries and Coasts 37 (5): 1188–1201.

    Article  CAS  Google Scholar 

  • Wood, J.D., D. Elliott, G. Garman, D. Hopler, W. Lee, S. McIninch, A.J. Porter, and P.A. Bukaveckas. 2016. Autochthony, allochthony and the role of consumers in influencing the sensitivity of aquatic systems to nutrient enrichment. Food Webs 7: 1–12.

    Article  Google Scholar 

  • Zwart, J.A., S.D. Sebestyen, C.T. Solomon, and S.E. Jones. 2017. The influence of hydrologic residence time on lake carbon cycling dynamics following extreme precipitation events. Ecosystems 20 (5): 1000–1014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our colleagues at the Virginia Institute of Marine Science for making the longitudinal diel oxygen dataset available via their VECOS website and to the Virginia Department of Environmental Quality Piedmont and Tidewater Offices for collecting longitudinal water quality data. We thank Alison Appling (USGS) for her assistance with the Bayesian modeling and Jian Shen (VIMS) for providing model output on atmospheric exchange coefficients for the James. Ken Moore and Robert Orth (VIMS) provided data and helpful discussions on SAV. Three anonymous reviewers provided valuable comments. This paper is a contribution to the VCU Rice Rivers Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Bukaveckas.

Additional information

Communicated by: James L. Pinckney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tassone, S.J., Bukaveckas, P.A. Seasonal, Interannual, and Longitudinal Patterns in Estuarine Metabolism Derived from Diel Oxygen Data Using Multiple Computational Approaches. Estuaries and Coasts 42, 1032–1051 (2019). https://doi.org/10.1007/s12237-019-00526-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00526-0

Keywords

Navigation