Skip to main content

Advertisement

Log in

Two Models Solutions for the Douro Estuary: Flood Risk Assessment and Breakwater Effects

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Estuarine floods are one of the most harmful and complex extreme events occurring in coastal environments. To predict the associated effects, characterize areas of risk, and promote population safety, numerical modeling is essential. This work performs a comparison and a combination of two 2-dimensional depth-averaged estuarine models (based on openTELEMAC-MASCARET and Delft3D hydrodynamic software packages), to develop a two-model ensemble approach that will improve forecast robustness when compared to a one-model approach. The ensemble was applied to one of the main Portuguese estuaries, the Douro river estuary, to predict the expected water levels associated with extreme river discharges in the present-day configuration with the new breakwaters. This is a region that is periodically under heavy flooding, which entails economic losses and damage to protected landscape areas and hydraulic structures. Both models accurately simulated water levels and currents for tidal- and flood-dominated validation simulations, with correlation values close to 1, RMSE below 15%, and small Bias and Skill coefficient close to 1. The two-model ensemble results revealed that the present-day estuarine mouth configuration will produce harsher effects for the riverine populations in case identical historical river floods take place. This is mainly due to the increase in the area and volume of the estuary’s sand spit related to the construction of the new breakwaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Private communication.

  2. Hourly flow rates for 1999, kindly provided by Electricidade de Portugal, S.A.

References

  • Araújo, M.F., J.-M. Jouanneau, P. Valério, T. Barbosa, A. Gouveia, O. Weber, A. Oliveira, A. Rodrigues, and J.M.A. Dias. 2002. Geochemical tracers of northern Portuguese estuarine sediments on the shelf. Progress in Oceanography 52 (2–4): 277–297.

    Article  Google Scholar 

  • Araújo, M.A.V.C., A. Mazzolari, and A. Trigo-Teixeira. 2013. An object oriented mesh generator: Application to flooding in the Douro estuary. Journal of Coastal Research Special Issue 65: 642–647.

    Article  Google Scholar 

  • Azevedo, I.C., P.M. Duarte, and A.A. Bordalo. 2006. Pelagic metabolism of the Douro estuary (Portugal) — Factors controlling primary production. Estuarine, Coastal and Shelf Science 69 (1–2): 133–146.

    Article  Google Scholar 

  • Azevedo, I.C., P.M. Duarte, and A.A. Bordalo. 2008. Understanding spatial and temporal dynamics of key environmental characteristics in a mesotidal Atlantic estuary (Douro, NW Portugal). Estuarine, Coastal and Shelf Science 76 (3): 620–633.

    Article  Google Scholar 

  • Azevedo, I.C., A.A. Bordalo, and P.M. Duarte. 2010. Influence of river discharge patterns on the hydrodynamics and potential contaminant dispersion in the Douro estuary (Portugal). Water Research 44 (10): 3133–3146.

    Article  CAS  Google Scholar 

  • Azevedo, I.C., A.A. Bordalo, and P.M. Duarte. 2014. Influence of freshwater inflow variability on the Douro estuaryprimary productivity: A modelling study. Ecological Modelling 272: 1–15.

    Article  CAS  Google Scholar 

  • Baker, L., and D. Ellison. 2008. Optimization of pedo-transfer functions using an artificial neural network ensemble method. Geoderma 144 (1–2): 212–224.

    Article  Google Scholar 

  • Bastos, L., A. Bio, J.L.S. Pinho, H. Granja, and A. Jorge da Silva. 2012. Dynamics of the Douro estuary sand spit before and after breakwater construction. Estuarine, Coastal and Shelf Science 109: 53–69.

    Article  Google Scholar 

  • Bastos, L., A. Bio and I. Iglesias. 2016. The importance of marine observatories and of RAIA in particular. Frontiers in Marine Science 3. https://doi.org/10.3389/fmars.2016.00140.

  • Becker, J.J., D.T. Sandwell, W.H.F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. Ingalls, S.-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer, J. Von Rosenberg, G. Wallace, and P. Weatherall. 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy 32: 355–371.

    Article  Google Scholar 

  • Bordalo, A.A., and M.E.C. Vieira. 2005. Spatial variability of phytoplankton, bacteria and viruses in the mesotidal salt wedge Douro Estuary (Portugal). Estuarine, Coastal and Shelf Science 63: 143–154.

    Article  CAS  Google Scholar 

  • Cantelaube, P., and J.-M. Terres. 2005. Seasonal weather forecasts for crop yield modelling in Europe. Tellus A 57: 476–487.

    Article  Google Scholar 

  • Carvalho, GS. 1999. A responsabilidade das estruturas portuárias na migração das praias para o interior. In Comunicações das Primeiras Jornadas de Engenharia Costeira e Portuária, 209–226. Delegação Portuguesa, Porto: Associação Internacional de Navegação.

  • Corti, S., and V. Pennati. 2000. A 3-D hydrodynamic model of river flow in a delta region. Hydrological Processes 14: 2301–2309.

    Article  Google Scholar 

  • deCastro, M., M. Gómez-Gesteira, M.N. Lorenzo, I. Álvarez, and A.J.C. Crespo. 2008. Influence of atmospheric modes on coastal upwelling along the western coast of the Iberian Peninsula, 1985 to 2005. Climate Research 36: 169–179.

    Article  Google Scholar 

  • Delft3D-FLOW. 2011. User Manual—Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. Netherlands: Deltares 674p.

    Google Scholar 

  • Dias, AAP. 2010. O Estuário do Rio Douro — O Risco de Cheias. Graduation thesis. Faculdade de Letras, Universidade do Porto, Portugal.

  • Dias, J.M., and J.F. Lopes. 2006. Implementation and assessment of hydrodynamic, salt and heat transport models: The case of Ria de Aveiro lagoon, Portugal. Environmental Modelling and Software 21: 1–15.

    Article  Google Scholar 

  • Dias, J.M.A., R. Gonzalez JM Jouanneau, M.F. Araújo, T. Drago, C. Garcia, A. Oliveira, A. Rodrigues, J. Vitorino, and O. Weber. 2002. Present day sedimentary processes on the northern Iberian shelf. Progress in Oceanography 52: 249–259.

    Article  Google Scholar 

  • Dias, J.M., M.C. Sousa, X. Bertin, A.B. Fortunato, and A. Oliveira. 2009. Numerical modeling of the impact of the Ancão Inlet relocation (Ria Formosa, Portugal). Environmental Modelling and Software 24: 711–725.

    Article  Google Scholar 

  • Dodet, G., X. Bertin, and R. Taborda. 2010. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modelling 31: 120–131.

    Article  Google Scholar 

  • Egbert, G.D., A.F. Bennett, and M.G.G. Foreman. 1994. TOPEX/POSEIDON tides estimated using a global inverse model. Journal Geophysical Research 99: 24821–24852.

    Article  Google Scholar 

  • Gomes, M.P., J.L. Pinho, J.S. Antunes do Carmo, and L. Santos. 2015. Hazard assessment of storm events for The Battery, New York. Ocean & Coastal Management 118: 22–31.

    Article  Google Scholar 

  • Gómez-Gesteira, M., L. Gimeno, M. deCastro, M.N. Lorenzo, I. Alvarez, R. Nieto, J.J. Taboada, A.J.C. Crespo, A.M. Ramos, I. Iglesias, J.L. Gomez-Gesteira, F.E. Santo, D. Barriopedro, and I.F. Trigo. 2011. The state of climate in NW Iberia. Climate Research 48: 109–144.

    Article  Google Scholar 

  • Granja, HM, L Bastos, JLS Pinho, J Gonçalves, RF Henriques, A Bio, J Mendes and A Magalhães. 2011. Integração de metodologias no estabelecimento de um programa de monitorização costeira para avaliação de risco. Abstract retrieved from: VII Conferência Nacional de Cartografia e Geodesia, Porto, pp. 11.

  • Horritt, M.S., and P.D. Bates. 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology 268: 87–99.

    Article  Google Scholar 

  • Hu, K., P. Ding, Z. Wang, and S. Yang. 2008. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China. Journal of Marine Systems 77: 114–136.

    Article  Google Scholar 

  • Iglesias, I., S. Venâncio, R. Peixoto, J.L. Pinho, P. Avilez-Valente, J. Vieira. 2016. The Douro Estuary: Modelling comparison for floods prevention. Actas das 4.as Jornadas de Engenharia Hidrográfica. Instituto Hidrográfico. ISBN 978-989-705-097-8.

  • IH. 1994. Campanha Hidromorfológica para o Estudo da Barra do Douro. Relatório Técnico. Lisboa: Divisão de Oceanografia Física, Instituto Hidrográfico.

    Google Scholar 

  • IH. 2012. Bathymetric model of Douro. Lisboa: Divisão de Hidrografia, Instituto Hidrográfico http://www.hidrografico.pt/cartografia-nautica-digital.php. Accessed April 2016.

    Google Scholar 

  • IPCC—Intergovernmental Panel on Climate Change. 2016. https://www.ipcc.ch/. Accessed July 2016.

  • Jones, J.E., and A.M. Davies. 2010. Application of a finite element model to the computation of tides in the Mersey Estuary and Eastern Irish Sea. Continental Shelf Research 30: 491–514.

    Article  Google Scholar 

  • Krige, D.G.. 1951. A statistical approach to some mine valuations and allied problems at the Witwatersrand. Master’s thesis, University of Witwatersrand.

  • Krogh, A., and J. Vedelsby. 1995. Neural network ensembles cross validation and active learning. Advances in Neural Information Processing Systems 7: 231–238.

    Google Scholar 

  • Li, M., L. Zhong, and W.C. Boicourt. 2005. Simulations of Chesapeake Bay estuary: Sensitivity to turbulence mixing parameterizations and comparison with observations. Journal of Geophysical Research 110: 2159–2202.

    Article  CAS  Google Scholar 

  • Lynch, D.R., and W.R. Gray. 1979. A wave equation model for finite element tidal computation. Computers and Fluids 7: 207–228.

    Article  Google Scholar 

  • Magalhães, C.M., A.A. Bordalo, and W.J. Wiebe. 2002. Temporal and spatial patterns of intertidal sediment-water nutrient and oxygen fluxes in the Douro River estuary, Portugal. Marine Ecology Progress Series 233: 55–71.

    Article  Google Scholar 

  • Matheron, G. 1963. Principles of geostatistics. Economic Geology 58: 1246–1266.

    Article  CAS  Google Scholar 

  • Mendes, R., N. Vaz, and J.M. Dias. 2013. Potential impacts of the mean sea level rise on the hydrodynamics of the Douro river estuary. Journal of Coastal Research Special Issue 65: 1951–1956.

    Article  Google Scholar 

  • Mohan Das, D., R. Singh, A. Kumar, D.R. Mailapalli, A. Mishra and C. Chatterjee. 2016. A multi-model ensemble approach for stream flow simulation. In Innovations in Agricultural and Biological Engineering, Modeling Methods and Practices in Soil and Water Engineering, ed. B. Panigrahi, M.R. Goyal, 71–102. Apple Academic Press. Chapter 4.

  • Monteiro, I.O., W.C. Marques, E.H. Fernandes, R.C. Gonçalves, and O.O. Möller. 2011. On the effect of earth rotation, river discharge, tidal oscillations, and wind in the dynamics of the Patos Lagoon coastal plume. Journal of Coastal Research 27: 120–130.

    Article  Google Scholar 

  • Néelz, S., and G. Pender. 2010. Benchmarking of 2D Dyfraulic modelling packages. UK: DEFRA/Environment Agency Retrieved from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/290884/scho0510bsno-e-e.pdf.

    Google Scholar 

  • Néelz, S., and G. Pender. 2013. Benchmarking the latest generation of 2D hydraulic modelling packages. UK: DEFRA/Environment Agency Retrieved from: http://evidence.environment-agency.gov.uk/FCERM/Libraries/FCERM_Project_Documents/SC120002_Benchmarking_2D_hydraulic_models_Report.sflb.ashx.

    Google Scholar 

  • Oliveira, J.M.P. 1973. O Espaço Urbano do Porto — Condições Naturais e Desenvolvimento. Coimbra: Instituto de Alta Cultura, Centro de Estudos Geográficos, Edições Afrontamento 496p.

    Google Scholar 

  • Pardé, M. 1966. Les crues du Douro d’aprés une étude portugaise remarquable. Vol. 23, 93–169. Lisboa: Boletim Trimestral de Informação, Direcção Geral dos Serviços Hidráulicos.

    Google Scholar 

  • Pinho, J.L.S., J.M.P. Vieira and D.R.C.B. Neves. 2010. Efeito das obras da embocadura na hidrodinâmica, intrusão salina e dinâmica sedimentar do estuário do Rio Douro. 10° Congresso da Água. Alvor, Portugal.

  • Pinto, J. 2007. Influência do regime de escoamento fluvial na hidrologia e dinâmica do estuário do Douro. Relatório final de estágio, Universidade de Évora.

  • Portela, L.I. 2008. Sediment transport and morphodynamics of the Douro River estuary. Geo-Marine Letters 28: 77–86.

    Article  Google Scholar 

  • Putra, S.S., M. van der Wegen, J. Reyns, A. van Dam, D.P. Solomatine, and J.A. Roelvink. 2015. Multi station calibration of 3D flexible mesh model: a case study of the Columbia Estuary. Procedia Environmental Sciences 28: 297–306.

    Article  Google Scholar 

  • Rahman, A and V Venugopal. 2015. Inter-comparison of 3D tidal flow models applied to Orkney Islands and Pentland Firth. Proceedings of the 11th European Wave and Tidal Energy Conference, pp: 10.

  • Robins, P.E., and A.G. Davies. 2010. Morphological controls in sandy estuaries: The influence of tidal flats and bathymetry on sediment transport. Ocean Dynamics 60: 503–517.

    Article  Google Scholar 

  • Rodrigues, R., C. Brandão and J.P. da Costa. 2003. As Cheias no Douro Ontem, Hoje e Amanhã. Ministério das Cidades, Ordenamento do Território e Ambiente, Instituto da Água. Report. http://snirh.pt/snirh/download/Douro_hoje.pdf. Accessed 16 Nov 2016.

  • Roy Bhowmik, S.K., and V.R. Durai. 2010. Application of multi-model ensemble techniques for real time district level rainfall forecasts in short range time scale over Indian region. Meteorology and Atmospheric Physics 106 (1–2): 19–35.

    Article  Google Scholar 

  • Rozante, J.R., D.S. Moreira, R.C.M. Godoy, and A.A. Fernandes. 2014. Multi-model ensemble: Technique and validation. Geoscientific Model Development Discussions 7: 2333–2343.

    Article  Google Scholar 

  • Santos, I., A.C. Teodoro, and F. Taveira-Pinto. 2010. Análise da evolução morfológica da restinga do rio Douro. Abstract retrieved from: 5as Jornadas de Hidráulica, 14. Porto: Recursos Hídricos e Ambiente.

    Google Scholar 

  • Silva, A. 1996. Implementação de um modelo hidromorfológico para a Barra do Douro: contribuição para a compreensão do sistema. Abstract retrieved from: 3° Congresso da Água, Lisboa. Available at http://maretec.mohid.com/MaretecManagement/ConferencePapers.asp.

  • SNIRH—Sistema Nacional de Informação de Recursos Hídricos. 2016. http://snirh.apambiente.pt/. Accessed June 2016.

  • Symonds, A.M., T. Vijverberg, S. Post, B. van der Spek, J. Henrotte and M. Sokolewicz. 2016. Comparison between Mike 21 FM, Delft3D and Delft3D FM flow models of Western Port Bay, Australia. Proceedings of 35th Conference on Coastal Engineering, Antalya, Turkey.

  • Tebaldi, C., and R. Knutti. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society – A 365: 2053–2075.

    Article  Google Scholar 

  • Telemac-2D. 2017. User Manual. http://wiki.opentelemac.org/doku.php?id=user_manual_telemac-2d.

  • Teng, J., A. Jakeman, J. Vaze, B. Croke, D. Dutta, and S. Kim. 2017. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling and Software 90: 201–216.

    Article  Google Scholar 

  • Thomson, M.C., F.J. Doblas-Reyes, S.J. Mason, R. Hagedorn, S.J. Connor, T. Phindela, A.P. Morse, and T.N. Palmer. 2006. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439: 576–579.

    Article  CAS  Google Scholar 

  • Trauth, M. 2006. MATLAB® recipes for earth sciences. Springer.

  • Van Maren, D.S., T. Van Kessel, K. Cronin, and L. Sittoni. 2015. The impact of channel deepening and dredging on estuarine sediment concentration. Continental Shelf Research 95: 1–14.

    Article  Google Scholar 

  • Vieira, M.E.C., and A.A. Bordalo. 2000. The Douro estuary (Portugal): A mesotidal salt wedge. Oceanologica Acta 23: 585–594.

    Article  Google Scholar 

  • Viitak, M., M. Maljutenko, V. Alari, Ü. Suursaar, S. Rikka, and P. Lagemaa. 2016. The impact of surface currents and sea level on the wave field evolution during St. Jude storm in the eastern Baltic Sea. Oceanologia 58: 176–186.

    Article  Google Scholar 

  • Wan, Y., H. Wu F Gu, and D. Roelvink. 2014. Hydrodynamic evolutions at the Yangtze estuary from 1998 to 2009. Applied Ocean research 47: 291–302.

    Article  Google Scholar 

  • Weigel, A.P., M.A. Liniger, and C. Appenzeller. 2008. Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Quarterly Journal of the Royal Meteorological Society 134: 241–260.

    Article  Google Scholar 

  • WMO. 2012. Guidelines on ensemble prediction systems and forecasting. WMO-No. 1091. Geneva: World Meteorological Organization http://www.wmo.int/pages/prog/www/Documents/1091_en.pdf. Accessed 16 Nov 2016.

    Google Scholar 

Download references

Funding

This research was supported by the Research Line ECOSERVICES, integrated in the Structured Program of R&D&I INNOVMAR: Innovation and Sustainability in the Management and Exploitation of Marine Resources (NORTE-01-0145-FEDER-000035), funded by the Northern Regional Operational Programme (NORTE2020) through the European Regional Development Fund (ERDF), and by the Brazilian National Council for Scientific and Technological Development (CNPq) through a scholarship granted to the 2nd author (Process 200016 / 2014-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Iglesias.

Additional information

Communicated by Arnoldo Valle-Levinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias, I., Venâncio, S., Pinho, J.L. et al. Two Models Solutions for the Douro Estuary: Flood Risk Assessment and Breakwater Effects. Estuaries and Coasts 42, 348–364 (2019). https://doi.org/10.1007/s12237-018-0477-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0477-5

Keywords

Navigation