Skip to main content
Log in

What Promotes the Recovery of Salt Marsh Infauna After Oil Spills?

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Many factors influence the rate at which biotic communities recover from environmental disasters, and a thorough understanding of these factors is needed to formulate effective mitigation strategies. The importance of foundation species, soil environmental quality, and benthic microalgae to the long-term recovery of the salt marsh infaunal community following the 2010 Deepwater Horizon oil spill was examined in northern Barataria Bay, LA, from 2011 to 2016. The community of 12 abundant taxa of meiofauna and juvenile macroinfauna began to rebound from oiling in < 2 years, but did not fully recover after 6.5 years. The pace and intensity of recovery of nematodes, copepods, most polychaetes, tanaids, juvenile bivalves, and amphipods were significantly and positively related to the recovery of Spartina alterniflora and benthic microalgae. However, total petroleum hydrocarbon concentrations remained elevated over time, and live belowground plant biomass, bulk density, dead aboveground plant biomass, and live aboveground biomass of Juncus roemerianus were not resilient, indicating that soil quality at oiled sites was insufficient to foster the recovery of the infaunal community as a whole. Recovery of the kinorhynch Echinoderes coulli, the polychaete Manayunkia aestuarina, ostracods, and juvenile gastropods was suppressed in association with these factors. Foundation species enhance salt marsh infaunal recovery by modifying habitat in the short term and improving soil quality over the longer term. Therefore, efforts to enhance the recovery of foundation species (e.g., by plantings) should benefit the recovery of microalgal primary producers and benthic consumers after oiling in salt marshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, M., R.N. Gorley, and R.K. Clarke. 2008. Permanova+ for primer: guide to software and statistical methods. Plymouth: Primer-E Limited 214 pp.

    Google Scholar 

  • Balthis, W.L., J.L. Hyland, C. Cooksey, P.A. Montagna, J.G. Baguley, R.W. Ricker, and C. Lewis. 2017. Sediment quality benchmarks for assessing oil-related impacts to the deep-sea benthos. Integrated Environmental Assessment and Management 13 (5): 840–851.

    Article  CAS  Google Scholar 

  • Bell, S.S. 1980. Meiofauna-macrofauna interactions in a high salt marsh habitat. Ecological Monographs 50 (4): 487–505.

    Article  Google Scholar 

  • Bonsdorff, E., A. Norkko, and E. Sandberg. 1995. Structuring zoobenthos: the importance of predation, siphon cropping and physical disturbance. Journal of Experimental Marine Biology and Ecology 192 (1): 125–144.

    Article  Google Scholar 

  • Brunner, C.A., K.M. Yeager, R. Hatch, S. Simpson, J. Keim, K.B. Briggs, and P. Louchouarn. 2013. Effects of oil from the 2010 Macondo well blowout on marsh foraminifera of Mississippi and Louisiana, USA. Environmental Science & Technology 47: 9115–9123.

    Article  CAS  Google Scholar 

  • Buffan-Dubau, E., and K.R. Carman. 2000. Diel feeding behavior of meiofauna and their relationships with microalgal resources. Limnology and Oceanography 45 (2): 381–395.

    Article  CAS  Google Scholar 

  • Carman, K.R., J.W. Fleeger, and S. Pomarico. 1997. Response of a benthic food web to hydrocarbon contamination. Limnology and Oceanography 42 (3): 561–571.

    Article  CAS  Google Scholar 

  • Carman, K.R., J.W. Fleeger, and S. Pomarico. 2000. Does historical exposure to hydrocarbon contamination alter the response of benthic communities to diesel contamination? Marine Environmental Research 49 (3): 255–278.

    Article  CAS  Google Scholar 

  • Clarke, K.R., and R.N. Gorley. 2006. PRIMER v6: User manual/tutorial. Plymouth: PRIMER-E 192 pp.

    Google Scholar 

  • Craft, C., and J. Sacco. 2003. Long-term succession of benthic infauna communities on constructed Spartina alterniflora marshes. Marine Ecology-Progress Series 257: 45–58.

    Article  Google Scholar 

  • Craft, C., J. Reader, J.N. Sacco, and S.W. Broome. 1999. Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecological Applications 9 (4): 1405–1419.

    Article  Google Scholar 

  • Craft, C., P. Megonigal, S. Broome, J. Stevenson, R. Freese, J. Cornell, L. Zheng, and J. Sacco. 2003. The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecological Applications 13 (5): 1417–1432.

    Article  Google Scholar 

  • Culbertson, J.B., I. Valiela, E.E. Peacock, C.M. Reddy, A. Carter, and R. van der Kruik. 2007. Long-term biological effects of petroleum residues on fiddler crabs in salt marshes. Marine Pollution Bulletin 54 (7): 955–962.

    Article  CAS  Google Scholar 

  • Culbertson, J.B., I. Valiela, M. Pickart, E.E. Peacock, and C.M. Reddy. 2008. Long-term consequences of residual petroleum on salt marsh grass. Journal of Applied Ecology 45 (4): 1284–1292.

    Article  Google Scholar 

  • Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490 (7420): 388–394.

    Article  CAS  Google Scholar 

  • Deepwater Horizon Trustees. 2016. Deepwater Horizon oil spill final programmatic damage assessment and restoration plan and final programmatic environmental impact statement. http://www.gulfspillrestoration.noaa.gov/restoration-planning/gulf-plan.

  • Deis, D.R., J.W. Fleeger, S.M. Bourgoin, I.A. Mendelssohn, Q. Lin, and A. Hou. 2017. Shoreline oiling effects and recovery of saltmarsh macroinvertebrates after the Deepwater Horizon oil spill. PeerJ 5: e3680. https://doi.org/10.7717/peerj.3680.

    Article  Google Scholar 

  • DeLaune, R.D., C.J. Smith, W.H. Patrick Jr., J.W. Fleeger, and M.D. Tolley. 1984. Effect of oil on salt marsh biota: methods for restoration. Environmental Pollution 36: 207–227.

    Article  Google Scholar 

  • Duan, J., W. Liu, X. Zhao, Y. Han, S.E. O’Reilly, and D. Zhao. 2017. Study of residual oil in bay Jimmy sediment 5 years after the Deepwater Horizon oil spill: Persistence of sediment retained oil hydrocarbons and effect of dispersants on desorption. Science of the Total Environment 618: 1244–1253. https://doi.org/10.1016/j.scitotenv.2017.09.234.

    Article  CAS  Google Scholar 

  • Fertig, B., M.J. Kennish, G.P. Sakowicz, and L.K. Reynolds. 2014. Mind the data gap: identifying and assessing drivers of changing eutrophication condition. Estuaries and Coasts 37: S198–S221.

    Article  CAS  Google Scholar 

  • Fleeger, J.W., K.R. Carman, and R.M. Nisbet. 2003. Indirect effects of contaminants on aquatic ecosystems. Science of the Total Environment 317 (1-3): 207–233.

    Article  CAS  Google Scholar 

  • Fleeger, J.W., K.R. Carman, M.R. Riggio, I.A. Mendelssohn, Q. Lin, A. Hou, D.R. Deis, and S. Zengel. 2015. Recovery of saltmarsh benthic microalgae and meiofauna following the Deepwater Horizon oil spill linked to recovery of Spartina alterniflora. Marine Ecology-Progress Series 536: 39–54.

    Article  Google Scholar 

  • Fleeger, J.W., M.R. Riggio, I.A. Mendelssohn, Q. Lin, A. Hou, and D.R. Deis. 2018. Recovery of saltmarsh meiofauna six years after the Deepwater Horizon oil spill. Journal of Experimental Marine Biology and Ecology 502: 182–190.

    Article  Google Scholar 

  • Fry, B., D.M. Baltz, M.C. Benfield, J.W. Fleeger, A. Grace, H.L. Haas, and Z.J. Quiñones-Rivera. 2003. Chemical indicators of movement and residency for brown shrimp (Farfantepenaeus aztecus) in coastal Louisiana marshscapes. Estuaries 26 (1): 82–97.

    Article  Google Scholar 

  • Galván, K.A., J.W. Fleeger, and B. Fry. 2008. Stable isotope addition reveals dietary importance of phytoplankton and benthic microalgae to saltmarsh infauna. Marine Ecology-Progress Series 359: 37–49.

    Article  Google Scholar 

  • Galván, K.A., J.W. Fleeger, B.J. Peterson, D.C. Drake, L.A. Deegan, and D.S. Johnson. 2011. Natural abundance stable isotopes and dual isotope tracer additions help to resolve resources supporting a saltmarsh food web. Journal of Experimental Marine Biology and Ecology 410: 1–11.

    Article  CAS  Google Scholar 

  • Gesteira, J.L.G., and J.C. Dauvin. 2000. Amphipods are good bioindicators of the impact of oil spills on soft-bottom macrobenthic communities. Marine Pollution Bulletin 40 (11): 1017–1027.

    Article  Google Scholar 

  • Giere, O., 2009. Meiobenthology. The microscopic motile fauna of aquatic sediments. 2nd edition. Springer-Verlag, Berlin. 527 pp.

  • Graham, S.A., and I.A. Mendelssohn. 2016. Contrasting effects of nutrient enrichment on below-ground biomass in coastal wetlands. Journal of Ecology 104 (1): 249–260.

    Article  CAS  Google Scholar 

  • Hentschel, B.T., N.T. Hayman, and T.W. Anderson. 2017. Hydrodynamic mediation of killifish predation on infaunal polychaetes. Limnology and Oceanography doi 63 (S1): S19–S29. https://doi.org/10.1002/lno.10719.

    Article  Google Scholar 

  • Hester, M.W., J.M. Willis, S. Rouhani, M.A. Steinhoff, and M.C. Baker. 2016. Impacts of the Deepwater Horizon oil spill on the salt marsh vegetation of Louisiana. Environmental Pollution 216: 361–370.

    Article  CAS  Google Scholar 

  • Higgins, R.P., and J.W. Fleeger. 1980. Seasonal changes in the population structure of Echinoderes coulli (Kinorhyncha). Estuarine Coastal Marine Science 10 (5): 495–505.

    Article  Google Scholar 

  • Hooper, D.U., F.S. Chapin, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J.H. Lawton, D.M. Lodge, M. Loreau, S. Naeem, and B. Schmid. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75 (1): 3–35.

    Article  Google Scholar 

  • Husseneder, C., J.R. Donaldson, and L.D. Foil. 2016. Impact of the 2010 Deepwater Horizon oil spill on population size and genetic structure of horse flies in Louisiana marshes. Scientific Reports 6.

  • Johnson, D.S., J.W. Fleeger, K.A. Galván, and E.B. Moser. 2007. Worm holes and their space-time continuum: Spatial and temporal variability of macroinfaunal annelids in a northern New England salt marsh. Estuaries and Coasts 30 (2): 226–237.

    Article  Google Scholar 

  • Johnson, D.S., J.W. Fleeger, M.R. Riggio, I.A. Mendelssohn, Q. Lin, S.A. Graham, D.R. Deis, and A. Hou. 2018. Saltmarsh plants, but not fertilizer, facilitate benthic invertebrate recolonization after an oil spill. Ecosphere 9 (1): e02082.

    Article  Google Scholar 

  • Kovach, R.P., C.C. Muhlfeld, R. Al-Chokhachy, J.B. Dunham, B.H. Letcher, and J.L. Kershner. 2016. Impacts of climatic variation on trout: a global synthesis and path forward. Reviews in Fish Biology and Fisheries 26 (2): 135–151.

    Article  Google Scholar 

  • Levin, L.A., and T.S. Talley. 2002. Natural and manipulated sources of heterogeneity controlling early faunal development of a salt marsh. Ecological Applications 12 (6): 1785–1802.

    Article  Google Scholar 

  • Levine, B.M., J.R. White, R.D. DeLaune, and K. Maiti. 2017. Crude oil effects on redox status of salt marsh soil in Louisiana. Soil Science Society of America Journal 81 (3): 647–653.

    Article  CAS  Google Scholar 

  • Lin, Q.X., and I.A. Mendelssohn. 2012. Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of coastal salt marshes in the northern Gulf of Mexico. Environmental Science & Technology 46 (7): 3737–3743.

    Article  CAS  Google Scholar 

  • Lin, Q., I.A. Mendelssohn, S. Graham, A. Hou, J.W. Fleeger, and D.R. Deis. 2016. Response of salt marshes to oiling from the Deepwater Horizon spill: implications for plant growth, soil surface-erosion, and shoreline stability. Science of the Total Environment 557–558: 369–377.

    Article  CAS  Google Scholar 

  • McCall, B.D., and S.C. Pennings. 2012. Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill. PLoS One 7 (3): e32735. https://doi.org/10.1371/journal.pone.0032735.

    Article  CAS  Google Scholar 

  • McCann, M.J., K.W. Able, R.R. Christian, F.J. Fodrie, O.P. Jensen, J.J. Johnson, P.C. Lopez-Duarte, C.W. Martin, J.A. Olin, M.J. Polito, B.J. Roberts, and S.L. Ziegler. 2017. Key taxa in food web responses to stressors: the Deepwater Horizon oil spill. Frontiers in Ecology and the Environment 15 (3): 142–149.

    Article  Google Scholar 

  • McGlathery, K.J., L.K. Reynolds, L.W. Cole, R.J. Orth, S.R. Marion, and A. Schwarzschild. 2012. Recovery trajectories during state change from bare sediment to eelgrass dominance. Marine Ecology-Progress Series 448: 209–221.

    Article  Google Scholar 

  • Mendelssohn, I.A., I.C. Anderson, D.M. Baltz, R. Caffey, K.R. Carman, J.W. Fleeger, S.B. Joye, Q. Lin, E. Maltby, E.B. Overton, and L. Rozas. 2012. Oil impacts to coastal wetlands: implications for the Mississippi River Delta ecosystem after the Deepwater Horizon oil spill. Bioscience 62 (6): 562–574.

    Article  Google Scholar 

  • Michel, J., and N. Rutherford. 2014. Impacts, recovery rates, and treatment options for spilled oil in marshes. Marine Pollution Bulletin 82 (1-2): 19–25.

    Article  CAS  Google Scholar 

  • Mills, C.G., and K.S. McNeal. 2014. Salt marsh sediment biogeochemical response to the BP Deepwater Horizon blowout. Journal of Environmental Quality 43 (5): 1813–1819.

    Article  CAS  Google Scholar 

  • Nixon, Z., S. Zengel, M. Baker, M. Steinhoff, G. Fricano, S. Rouhani, and J. Michel. 2016. Shoreline oiling from the Deepwater Horizon oil spill. Marine Pollution Bulletin 107 (1): 170–178.

    Article  CAS  Google Scholar 

  • Nordstrom, M.C., A.W. Demopoulos, C.R. Whitcraft, A. Rismondo, P. McMillan, J.P. Gonzalez, and L.A. Levin. 2015. Food web heterogeneity and succession in created saltmarshes. Journal of Applied Ecology 52: 1343–1354.

    Article  Google Scholar 

  • Okoro, D., P. Oviasogie, and F. Oviasogie. 2011. Soil quality assessment 33 months after crude oil spillage and clean-up. Chemical Speciation and Bioavailability 23 (1): 1–6.

    Article  Google Scholar 

  • Pascal, P.-Y., J.W. Fleeger, H.T.S. Boschker, H.M. Mitwally, and D.S. Johnson. 2013. Response of the benthic food web to short- and long-term nutrient enrichment in saltmarsh mudflats. Marine Ecology-Progress Series 474: 27–41.

    Article  Google Scholar 

  • Pennings, S.C., B.D. McCall, and L. Hooper-Bui. 2014. Effects of oil spills on terrestrial arthropods in coastal wetlands. Bioscience 64 (9): 789–795.

    Article  Google Scholar 

  • Pennings, S.C., S. Zengel, J. Oehrig, M. Alber, T.D. Bishop, D.R. Deis, D. Devlin, A.R. Hughes, J.J. Hutchens, W.M. Kiehn, C.R. McFarlin, C.L. Montague, S. Powers, C.E. Proffitt, N. Rutherford, C.L. Stagg, and K. Walters. 2016. Marine ecoregion and Deepwater Horizon oil spill affect recruitment and population structure of a salt marsh snail. Ecosphere 7 (12): e01588.

    Article  Google Scholar 

  • Peterson, C.H., S.D. Rice, J.W. Short, D. Esler, J.L. Bodkin, B.E. Ballachey, and D.B. Irons. 2003. Long-term ecosystem response to the Exxon Valdez oil spill. Science 302 (5653): 2082–2086.

    Article  CAS  Google Scholar 

  • Rabalais, N.N., and R.E. Turner. 2016. Effects of the Deepwater Horizon oil spill on coastal marshes and associated organisms. Oceanography 29 (3): 150–159.

    Article  Google Scholar 

  • Schratzberger, M., and J. Ingels. 2017. Meiofauna matters: the roles of meiofauna in benthic ecosystems. Journal of Experimental Marine Biology and Ecology 502: 12–25. https://doi.org/10.1016/j.jembe.2017.01.007.

    Article  Google Scholar 

  • Silliman, B.R., J. van de Koppel, M.W. McCoy, J. Diller, G.N. Kasozi, K. Earl, P.N. Adams, and A.R. Zimmerman. 2012. Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America 109 (28): 11234–11239.

    Article  Google Scholar 

  • Thomas, Z., and K.M. Waring. 2015. Enhancing resiliency and restoring ecological attributes in second-growth Ponderosa pine stands in northern New Mexico, USA. Forest Science 61 (1): 93–104.

    Article  Google Scholar 

  • Thorne, R.E., and G.L. Thomas. 2008. Herring and the “Exxon Valdez” oil spill: an investigation into historical data conflicts. ICES Journal of Marine Science 65: 44–50.

    Article  Google Scholar 

  • Trujillo-Narcia, A., M. del Carmen Rivera-Cruz, L. del Carmen Lagunes-Espinoza, D. Jesus Palma-Lopez, S. Soto-Sanchez, and G. Ramirez-Valverde. 2012. Effects of restoration of riverine sediments contaminated with crude-oil. Revista Internacional de Contaminacion Ambiental 28: 361–374.

    CAS  Google Scholar 

  • U.S. District Court. 2015. Oil spill by the oil rig “Deepwater Horizon” in the Gulf of Mexico, on April 20, 2010, findings of fact and conclusions of law: phase two trial. New Orleans: United States District court for the Eastern District of Louisiana. Available at http://www.laed.uscourts.gov/sites/default/ files/ OilSpill/ orders/1152015FindingsPhaseTwo.pdf. Accessed on 3 March 2016.

  • van der Zee, E.M., C. Angelini, L.L. Govers, M.J.A. Christianen, A.H. Altieri, K.J. van der Reijden, B.R. Silliman, J.V. De Koppel, M. van der Geest, J.A. van Gils, H.W. van der Veer, T. Piersma, P.C. de Ruiter, H. Olff, and T. van der Heide. 2016. How habitat-modifying organisms structure the food web of two coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences 283: 20152326. https://doi.org/10.1098/rspb.2015.2326.

    Article  CAS  Google Scholar 

  • Wagg, C., S.F. Bender, F. Widmer, and M.G.A. van der Heijden. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America 111: 5266–5270.

    Article  CAS  Google Scholar 

  • Warren, R.S., P.E. Fell, R. Rozsa, A.H. Brawley, A.C. Orsted, E.T. Olson, V. Swamy, and W.A. Niering. 2002. Salt marsh restoration in Connecticut: 20 years of science and management. Restoration Ecology 10 (3): 497–513.

    Article  Google Scholar 

  • Whanpetch, N., M. Nakaoka, H. Mukai, T. Suzuki, S. Nojima, T. Kawai, and C. Aryuthaka. 2010. Temporal changes in benthic communities of seagrass beds impacted by a tsunami in the Andaman Sea, Thailand. Estuarine Coastal and Shelf Science 87 (2): 246–252.

    Article  Google Scholar 

  • Whipple, S.A., J.W. Fleeger, and L.L. Cook. 1981. The influence of tidal flushing, light exposure and natant macrofauna on edaphic chlorophyll a in a Louisiana salt marsh. Estuarine, Coastal and Shelf Science 13 (6): 637–643.

    Article  CAS  Google Scholar 

  • Whitcraft, C.R., and L.A. Levin. 2007. Regulation of benthic algal and animal communities by salt marsh plants: Impact of shading. Ecology 88 (4): 904–917.

    Article  Google Scholar 

  • Zengel, S., B.M. Bernik, N. Rutherford, Z. Nixon, and J. Michel. 2015. Heavily oiled salt marsh following the Deepwater Horizon oil spill, ecological comparisons of shoreline cleanup treatments and recovery. Plos One. https://doi.org/10.1371/journal.Pone.0132324.

  • Zengel, S., C.L. Montague, S.C. Pennings, S.P. Powers, M. Steinhoff, G. Fricano, C. Schlemme, M.N. Zhang, J. Oehrig, Z. Nixon, S. Rouhani, and J. Michel. 2016a. Impacts of the Deepwater Horizon oil spill on salt marsh periwinkles (Littoraria irrorata). Environmental Science & Technology 50 (2): 643–652.

    Article  CAS  Google Scholar 

  • Zengel, S., S.C. Pennings, B. Silliman, C. Montague, J. Weaver, D.R. Deis, M.O. Krasnec, N. Rutherford, and Z. Nixon. 2016b. Deepwater Horizon oil spill impacts on salt marsh fiddler crabs (Uca spp.). Estuaries and Coasts 39 (4): 1154–1163.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stefan Bourgoin for assistance with the creation of the sampling site map.

Funding

This research was made possible by a grant from The Gulf of Mexico Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Fleeger.

Additional information

Communicated by Judy Grassle

Electronic Supplementary Material

ESM 1

(DOCX 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleeger, J.W., Riggio, M.R., Mendelssohn, I.A. et al. What Promotes the Recovery of Salt Marsh Infauna After Oil Spills?. Estuaries and Coasts 42, 204–217 (2019). https://doi.org/10.1007/s12237-018-0443-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0443-2

Keywords

Navigation