Benthic Superheroes: Living Foraminifera from Three Bays in the Mission-Aransas National Estuarine Research Reserve, USA

Abstract

Studies of living foraminiferal assemblages provide much information about their roles in present environments and a perspective on interpreting the past. Along modern coasts, benthic Foraminifera act as ecological indicators in their responses to different natural and anthropogenic conditions, such as food availability, oxygen concentrations, salinity, and trace metal concentrations. A detailed survey of foraminiferal populations was undertaken in the Mission-Aransas National Estuarine Research Reserve, Texas, close to the time of its establishment in 2006. The purpose was to gauge the overall status of populations and provide baseline data for future comparison. The arid south Texas Gulf Coast is a variable and often harsh environment where biota are subject to multiple anthropogenic stressors. Despite these rigors, living Foraminifera were prolific in the Reserve. This paper discusses the results from Mesquite (July 2008), Copano (May 2006), and Mission Bays (June 2006). Populations were robust in each bay, with Ammonia parkinsoniana, Ammotium salsum, and Elphidium excavatum being most abundant. Highest numbers corresponded mainly to areas of greater circulation. In Mission Bay, elemental analysis of shells, prompted by the presence of sulfur grains in sediments and by yellow tests, detected elevated levels of barium, strontium, and iron. Most sediment samples were black and sulfidic, and ubiquitous framboidal pyrite in sediment and shells suggests that forams were frequently subject to low-oxygen conditions. Abundant living numbers, tolerance of low-oxygen conditions, and the ability to cycle trace metals emphasize the resilience of Foraminifera in taxing environments and their integral position as lower trophic level members.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Benito, X.B., R. Trobajo, A. Cearreta, and C. Ibanez. 2016. Benthic Foraminifera as indicators of habitat in a Mediterranean delta: Implications for ecological and paleoenvironmental studies. Estuarine Coastal and Shelf Science 180: 91–113.

    Article  Google Scholar 

  2. Berner, R.A. 1970. Sedimentary pyrite formation. American Journal of Science 68: 1–23.

    Article  Google Scholar 

  3. Berner, R.A. 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta 48 (4): 605–615.

    CAS  Article  Google Scholar 

  4. Bernhard, J.M. 2003. Potential symbionts in bathyal Foraminifera. Science 299 (5608): 861.

    CAS  Article  Google Scholar 

  5. Bernhard, J.M., and B.K. Sen Gupta. 1999. Foraminifera of oxygen depleted environments. In Modern foraminifera, ed. B.K. Sen Gupta, 201–216. Massachusetts: Kluwer Academic Publishers.

    Google Scholar 

  6. Billeaud, I., B. Tessier, and P. Lesueur. 2009. Impacts of late Holocene rapid climate changes as recorded in a macrotidal coastal setting (Mont-Saint-Michel Bay, France). Geology 37 (11): 1031–1034.

    Article  Google Scholar 

  7. Blatt, H., G. Middleton, and R. Murray. 1972. Origin of sedimentary rocks. New Jersey: Prentice-Hall, Inc.

  8. Bottrell, S.H., R.J.G. Mortimer, I.M. Davies, M.S. Harvey, and M.D. Krom. 2009. Sulphur cycling in organic-rich marine sediments from a Scottish fjord. Sedimentology 56 (4): 1159–1173.

    CAS  Article  Google Scholar 

  9. Butler, I.B., and D. Rickard. 2000. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta 64 (15): 2665–2672.

    CAS  Article  Google Scholar 

  10. Buzas, M.A., and S.J. Culver. 1984. Species duration and evolution: benthic Foraminifera on the Atlantic continental margin of North America. Science 225 (4664): 829–830.

    CAS  Article  Google Scholar 

  11. Buzas, M.A., L.C. Hayek, P. Buzas-Stephens, and A.R. Simms. 2017. The ecological balance of nature and the evolution of Baffin Bay, Texas. Journal of Foraminiferal Research 47: 219–227.

    Google Scholar 

  12. Buzas-Stephens, P., and M.A. Buzas. 2005. Population dynamics and dissolution of Foraminifera in Nueces Bay, Texas. Journal of Foraminiferal Research 35 (3): 248–258.

    Article  Google Scholar 

  13. Buzas-Stephens, P., E.A. Pessagno Jr., and C.J. Bowen. 2003. Foraminiferal response to habitat disruption: Arroyo Colorado, Texas. Journal of Foraminiferal Research 33 (4): 294–308.

    Article  Google Scholar 

  14. Buzas-Stephens, P., M.A. Buzas, and B.A. Elliott. 2011. Foraminiferal population response to fluctuating inflow into Nueces Bay, Texas. Journal of Foraminiferal Research 41 (1): 14–21.

    Article  Google Scholar 

  15. Buzas-Stephens, P., D. N. Livsey, A. R. Simms, and M. A. Buzas. 2014. Estuarine Foraminifera record Holocene stratigraphic changes and Holocene climate changes in ENSO and the North American monsoon: Baffin Bay, Texas. Palaeogeography, Palaeoclimatology, Palaeoecology 404: 44–56.

    Article  Google Scholar 

  16. Cherchi, A., C. Buosi, P. Zuddas, and G. DeGiudici. 2012. Bioerosion by microbial euendoliths in benthic Foraminifera from heavy metal-polluted coastal environments of Portovesme (south-western Sardinia, Italy). Biogeosciences 9 (11): 4607–4620.

    CAS  Article  Google Scholar 

  17. Culver, S.J., and M.A. Buzas. 1995. The effects of anthropogenic habitat disturbance, habitat destruction, and global warming on shallow marine benthic Foraminifera. Journal of Foraminiferal Research 25 (3): 204–211.

    Article  Google Scholar 

  18. Debenay, J.-P., and J.-J. Guillou. 2002. Ecological transition indicated by foraminiferal assemblages in paralic environments. Estuaries 25 (6): 1107–1120.

    Article  Google Scholar 

  19. Evans, A., K. Madden, and S.M. Palmer. 2012. The ecology and sociology of the Mission-Aransas estuary: an estuarine and watershed profile. Texas: University of Texas Marine Science Institute.

    Google Scholar 

  20. Folk, R.L. 2005. Nannobacteria and the formation of framboidal pyrite: Textural evidence. Journal of Earth System Science 114 (3): 369–374.

    Article  Google Scholar 

  21. Harmon, R.S., F.C. De Lucia, C.E. McManus, N.J. McMillan, T.F. Jenkins, M.E. Walsh, and A. Miziolek. 2006. Laser-induced breakdown spectroscopy—An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Applied Geochemistry 21 (5): 730–747.

    CAS  Article  Google Scholar 

  22. Koho, K.A., and E. Piña-Ochoa. 2012. Benthic Foraminifera: Inhabitants of low-oxygen environments. In Anoxia. Cellular origin, life in extreme habitats and astrobiology, ed. A. Altenbach, J. Bernhard, and J. Seckbach, vol. 21, 249–285. Dordrecht: Springer.

    Google Scholar 

  23. Konhauser, K. 2007. Introduction to geomicrobiology. Victoria: Blackwell Publishing.

    Google Scholar 

  24. Langezaal, A.M., N.T. Jannink, E.S. Pierson, and G.J. van der Zwaan. 2005. Foraminiferal selectivity toward bacteria: An experimental approach using a cell-permeant stain. Journal of Sea Research 54 (4): 256–275.

    Article  Google Scholar 

  25. Leorri, E., and A. Cearreta. 2004. Holocene environmental development of the Bilbao estuary, northern Spain: Sequence stratigraphy and foraminiferal interpretation. Marine Micropaleontology 51 (1-2): 75–94.

    Article  Google Scholar 

  26. Leorri, E., R. Martin, and P. McLaughlin. 2006. Holocene environmental and parasequence development of the St. Jones Estuary, Delaware (USA): Foraminiferal proxies of natural climatic and anthropogenic change. Palaeogeography, Palaeoclimatology, Palaeoecology 241 (3-4): 590–607.

    Article  Google Scholar 

  27. Maclean, L.C.W., T. Tyliszczak, P.U.P.A. Gilbert, D. Zhou, T.J. Pray, T.C. Onstott, and G. Southam. 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology 6 (5): 471–480.

    CAS  Article  Google Scholar 

  28. Madkhour, H.A., and M.Y. Ali. 2009. Heavy metals in the benthic Foraminifera from the coastal lagoons, Red Sea, Egypt: Indicators of anthropogenic impact on environment (case study). Environmental Geology 58 (3): 543–553.

    Article  Google Scholar 

  29. Mannino, A., and P.A. Montagna. 1997. Small-scale spatial variation of macrobenthic community structure. Estuaries 29: 159–173.

    Article  Google Scholar 

  30. McMillan, N.J., R.S. Harmon, F.C. De Lucia, and A.M. Miziolek. 2007. Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates. Spectrochimica Acta, Part B: Atomic Spectroscopy 62 (12): 1528–1536.

    Article  Google Scholar 

  31. Murray, J.W., and S.S. Bowser. 2000. Mortality, protoplasm decay rate and reliability of staining techniques to recognize “living” Foraminifera: A review. Journal of Foraminiferal Research 30 (1): 66–70.

    Article  Google Scholar 

  32. Parker, F.L., F.B. Phleger, and J.F. Peirson. 1953. Ecology of Foraminifera from San Antonio Bay and environs, southwest Texas. Cushman Foundation for Foraminiferal Research Special Publication 2: 1–75.

    Google Scholar 

  33. Phelger, F.B. 1960. Ecology and distribution of recent Foraminifera. Maryland: Johns Hopkins Press.

    Google Scholar 

  34. Phleger, F.B. 1956. Significance of living foraminiferal populations along the central Texas coast. Contributions from the Cushman Foundation of Foraminiferal Research 7: 106–151.

    Google Scholar 

  35. Poag, C.W. 1981. Ecologic atlas of benthic Foraminifera of the Gulf of Mexico. Massachusetts: Marine Science International.

    Google Scholar 

  36. Poag, C.W. 2015. Benthic Foraminifera of the Gulf of Mexico: Distribution, ecology, paleoecology. Texas: Texas A & M University Press.

    Google Scholar 

  37. Rumolo, P., D.S. Manta, M. Sprovieria, R. Coccioni, L. Ferraroa, and E. Marsella. 2009. Heavy metals in benthic Foraminifera from the highly polluted sediments of the Naples harbour (Southern Tyrrhenian Sea, Italy). Science of the Total Environment 407 (21): 5795–5802.

    CAS  Article  Google Scholar 

  38. Sen Gupta, B.K., and M.L. Machain-Castillo. 1993. Benthic Foraminifera in oxygen-poor habitats. Marine Micropaleontology 20 (3-4): 183–201.

    Article  Google Scholar 

  39. Sugawara, H., M. Sakakibara, D. Belton, and T. Suzuki. 2013. Formation process of pyrite polyframboid based on the heavy-metal analysis by micro-PIXE. Environmental. Earth Science 69 (3): 811–819.

    CAS  Article  Google Scholar 

  40. Walton, W.R. 1952. Techniques for the recognition of living Foraminifera. Contributions from the Cushman Foundation for Foraminiferal Research 3: 56–60.

    Google Scholar 

  41. White, W.A., T.R. Calnan, R.A. Morton, R.S. Kimble, T.G. Littleton, J.H. McGowen, H.S. Nance, and K.E. Schmedes. 1983. Submerged lands of Texas, Corpus Christi area: Sediments, geochemistry, benthic macroinvertebrates, and associated wetlands. Texas: Bureau of Economic Geology.

    Google Scholar 

  42. Whitledge, T. E., and D. A. Stockwell. 1995. The effects of mandated freshwater releases on the nutrient and pigment environment in Nueces Bay and Rincon Delta: 1990–1994. In Proceedings of the 24th Water for Texas Conference, 47–51.Texas: Texas Water Resources Institute.

  43. Williams, H.F.L. 1995. Foraminiferal record of recent environmental change: Mad Island Lake, Texas. Journal of Foraminiferal Research 25 (2): 167–179.

    Article  Google Scholar 

  44. Wladyslaw, A., A.V. Altenbach, and C. Leiter. 2012. The relevance of anoxic and agglutinated benthic Foraminifera to the possible Archean evolution of eukaryotes. In Anoxia. Cellular origin, life in extreme habitats and astrobiology, ed. A. Altenbach, J. Bernhard, and J. Seckbach, 21st ed., 615–630. Dordrecht: Springer.

    Google Scholar 

  45. Yanko, V., A.J. Arnold, and W.C. Parker. 1999. Effects of marine pollution on benthic Foraminifera. In Modern foraminifera, ed. B.K. Sen Gupta, 217–235. Massachusetts: Kluwer Academic Publishers.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Joan Bernhard for her invaluable comments; Frank Ernst, for captaining the boats and helping with sampling; and Brent Elliott and Tiffany Humberson for their help with sampling. We are also grateful to editors and reviewers who helped strengthen and clarify the paper.

Funding

This work was supported in part by Midwestern State University Faculty Grants.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pamela Buzas-Stephens.

Additional information

Communicated by Judy Grassle

Electronic supplementary material

ESM 1

(PDF 443 kb)

ESM 2

(PDF 130 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buzas-Stephens, P., Buzas, M.A., Price, J.D. et al. Benthic Superheroes: Living Foraminifera from Three Bays in the Mission-Aransas National Estuarine Research Reserve, USA. Estuaries and Coasts 41, 2368–2377 (2018). https://doi.org/10.1007/s12237-018-0425-4

Download citation

Keywords

  • Benthic Foraminifera
  • Pyrite
  • Texas coast
  • Trace metals
  • Low oxygen