Advertisement

Impact of River-Tide Dynamics on the Temporal-Spatial Distribution of Residual Water Level in the Pearl River Channel Networks

  • Huayang Cai
  • Qingshu Yang
  • Zihao Zhang
  • Xiaojuan Guo
  • Feng Liu
  • Suying Ou
Article

Abstract

The behavior of the residual water level in estuarine environment is complex due to the highly nonlinear interaction between river flow and tide and the contributions made by these two external forcing to the dynamics of the residual water level are not yet fully understood. In this study, we investigate the effect of river-tide dynamics on the temporal-spatial changes of flow in terms of residual water level in the Pearl River channel networks, which is one of the complex channel networks in the world. Making use of a nonstationary tidal harmonic analysis, the continuous time series observations of water level covering a spring-neap cycle in 1999 (representing flood season) and 2001 (representing dry season) collected from around 60 stations in the Pearl River channel networks have been used to extract the temporal-spatial changes in stage and tidal properties (including amplitudes and phases) as a function of variable freshwater discharge and ocean tide. It was shown that the averaged residual water level during the flood season (ranging 0–5 m) is one order magnitude than that during the dry season (ranging 0–0.35 m). The distribution of the residual water level clearly indicates that the Pearl River channel networks feature two sub-systems, i.e., the central part of the channel networks being river-dominated with high value of residual water level and the eastern and western sides being tide-dominated with low value of residual water level. To understand the relative importance of river flow and tide on the temporal-spatial distribution of the residual water level, an idealized model is subsequently applied to the Modaomen estuary, which debouches the largest portion of river discharge into the South China Sea. Analytical results showed that the residual water level is mainly determined by the variation of the freshwater discharge for the flood season, while it is primarily controlled by the tidal forcing for the dry season and features a typical spring-neap cycle.

Keywords

Residual water level River-tide dynamics NS_TIDE Idealized model Channel networks 

Notes

Acknowledgements

The research reported herein is funded by the National Key R&D program of China (Grant No. 2016YFC0402600), by the National Natural Science Foundation of China (Grant Nos. 51709287, 41106015, and 41476073), and by the Water Resource Science and Technology Innovation Program of Guangdong Province (Grant No. 2016-20).

Supplementary material

12237_2018_399_MOESM1_ESM.docx (698 kb)
ESM 1 (DOCX 698 kb)
12237_2018_399_MOESM2_ESM.zip (443 kb)
ESM 2 (ZIP 442 kb)

References

  1. Buschman, F.A., A.J.F. Hoitink, M. van der Vegt, and P. Hoekstra. 2009. Subtidal water level variation controlled by river flow and tides. Water Resources Research 45 (10): W10420.  https://doi.org/10.1029/2009WR008167.CrossRefGoogle Scholar
  2. Cai, H., H.H.G. Savenije, Q. Yang, S. Ou, and Y. Lei. 2012. Influence of river discharge and dredging on tidal wave propagation: Modaomen estuary case. Journal of Hydraulic Engineering ASCE 138 (10): 885–896.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000594.CrossRefGoogle Scholar
  3. Cai, H., H.H.G. Savenije, and M. Toffolon. 2014a. Linking the river to the estuary: Influence of river discharge on tidal damping. Hydrology and Earth System Sciences 18 (1): 287–304.  https://doi.org/10.5194/hess-18-287-2014.CrossRefGoogle Scholar
  4. Cai, H., H.H.G. Savenije, and C. Jiang. 2014b. Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations. Hydrology and Earth System Sciences 18 (10): 4153–4168.  https://doi.org/10.5194/hess-18-4153-2014.CrossRefGoogle Scholar
  5. Cai, H., H.H.G. Savenije, C. Jiang, L. Zhao, and Q. Yang. 2016. Analytical approach for determining the mean water level profile in an estuary with substantial fresh water discharge. Hydrology and Earth System Sciences 20 (1): 1–19.  https://doi.org/10.5194/hess-20-1-2016.CrossRefGoogle Scholar
  6. Doodson, A.T. 1921. The harmonic development of the tide-generating potential. Proceedings of the Royal Society of London, Series A 100 (704): 305–329.  https://doi.org/10.1098/rspa.1921.0088.CrossRefGoogle Scholar
  7. Dronkers, J.J. 1964. Tidal computations in rivers and coastal waters, 518. Amsterdam: North-Holland Publishing Company.Google Scholar
  8. Godin, G. 1985. Modification of river tides by the discharge. Journal of Waterway, Port, Coastal, and Ocean Engineering ASCE 111 (2): 257–274.  https://doi.org/10.1061/(ASCE)0733-950X(1985)111:2(257).CrossRefGoogle Scholar
  9. Godin, G. 1991. Compact approximations to the bottom friction term, for the study of tides propagating in channels. Continental Shelf Research 11 (7): 579–589.  https://doi.org/10.1016/0278-4343(91)90013-V.CrossRefGoogle Scholar
  10. Godin, G. 1999. The propagation of tides up rivers with special considerations on the upper Saint Lawrence river. Estuarine, Coastal and Shelf Science 48 (3): 307–324.  https://doi.org/10.1006/ecss.1998.042210.1006/ecss.1998.0422.CrossRefGoogle Scholar
  11. Godin, G., and A. Martinez. 1994. Numerical experiments to investigate the effects of quadratic friction on the propagation of tides in a channel. Continental Shelf Research 14 (7–8): 723–748.  https://doi.org/10.1016/0278-4343(94)90070-1.CrossRefGoogle Scholar
  12. Guo, L.C., M. van der Wegen, D. Roelvink, and Q. He. 2014. The role of river flow and tidal asymmetry on 1D estuarine morphodynamics. Journal of Geophysical Research 119 (11): 2315–2334.  https://doi.org/10.1002/2014JF003110.Google Scholar
  13. Guo, L.C., M. van der Wegen, D.A. Jay, P. Matte, Z.B. Wang, D. Roelvink, and Q. He. 2015. River-tide dynamics: Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary. Journal of Geophysical Research 120 (5): 3499–3521.  https://doi.org/10.1002/2014JC010491.Google Scholar
  14. Hoitink, A.J.F., Hoekstra, P., and van Maren, D.S. 2003. Flow asymmetry associated with astronomical tides: Implications for the residual transport of sediment. Journal of Geophysical Research 108: C10,3315.  https://doi.org/10.1029/2002JC001539.
  15. Horrevoets, A.C., H.H.G. Savenije, J.N. Schuurman, and S. Graas. 2004. The influence of river discharge on tidal damping in alluvial estuaries. Journal of Hydrology 294 (4): 213–228.  https://doi.org/10.1016/j.jhydrol.2004.02.012.CrossRefGoogle Scholar
  16. Jay, D.A. 1991. Green Law revisited: Tidal long-wave propagation in channels with strong topography. Journal of Geophysical Research 96 (C11): 20585–20598.  https://doi.org/10.1029/91JC01633.CrossRefGoogle Scholar
  17. Jay, D.A., and E.P. Flinchem. 1997. Interaction of fluctuating river flow with a barotropic tide: A demonstration of wavelet tidal analysis methods. Journal of Geophysical Research 102 (C3): 5705–5720.  https://doi.org/10.1029/96JC00496.CrossRefGoogle Scholar
  18. Jay, D.A., Leffler, K., Degens, S. 2011. Long-term evolution of Columbia River Tides. Journal of Waterway Port Coastal and Ocean Engineering ASCE 137(4): 182–191.  https://doi.org/10.1061/(ASCE)WW.1943-5460.0000082.
  19. Jay, D.A., K. Leffler, H.L. Diefenderfer, and A.B. Borde. 2015. Tidal-fluvial and estuarine processes in the Lower Columbia River: I. Along-channel water level variations, Pacific Ocean to Bonneville Dam. Estuaries and Coasts 38 (2): 415–433.  https://doi.org/10.1007/s12237-014-9819-0.CrossRefGoogle Scholar
  20. Kennedy, J., and R. Eberhart. 1995. Particle swarm optimization. Proceedings IEEE International Conference on Neural Networks 4: 1942–1948.CrossRefGoogle Scholar
  21. Kukulka, T., and D.A. Jay. 2003a. Impacts of Columbia River discharge on salmonid habitat: 1. A nonstationary fluvial tide model. Journal of Geophysical Research 108 (C9): 3293.  https://doi.org/10.1029/2002JC001382.CrossRefGoogle Scholar
  22. Kukulka, T., and D.A. Jay. 2003b. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat. Journal of Geophysical Research 108 (C9): 3294.  https://doi.org/10.1029/2003JC001829.CrossRefGoogle Scholar
  23. Leblond, P.H. 1978. On tidal propagation in shallow rivers. Journal of Geophysical Research 83 (Nc9): 4717–4721.  https://doi.org/10.1029/JC083iC09p04717.CrossRefGoogle Scholar
  24. LeBlond, P.H. 1979. Forced fortnightly tides in shallow rivers. Atmosphere-Ocean 17 (3): 253–264.  https://doi.org/10.1080/07055900.1979.9649064.CrossRefGoogle Scholar
  25. Leonardi, N., A.S. Kolker, and S. Fagherazzi. 2015. Interplay between river discharge and tides in a delta distributary. Advances in Water Resources 80: 69–78.  https://doi.org/10.1016/j.advwatres.2015.03.005.CrossRefGoogle Scholar
  26. Liu, F., L.R. Yuan, Q.S. Yang, S.Y. Ou, L.L. Xie, and X. Cui. 2014. Hydrological responses to the combined influence of diverse human activities in the Pearl River delta, China. Catena 113: 41–55.  https://doi.org/10.1016/j.catena.2013.09.003.CrossRefGoogle Scholar
  27. Luo, X.L., Zeng, E.Y., Ji, R.Y., Wang, C.P. 2007. Effects of in-channel sand excavation on the hydrology of the Pearl River Delta, China. Journal of Hydrology 343(3–4): 230–239.  https://doi.org/10.1016/j.jhydrol.2007.06.019.
  28. Matte, P., D.A. Jay, and E.D. Zaron. 2013. Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides. Journal of Atmospheric and Oceanic Technology 30 (3): 569–589.  https://doi.org/10.1175/JTECH-D-12-00016.1.CrossRefGoogle Scholar
  29. Matte, P., Y. Secretan, and J. Morin. 2014. Temporal and spatial variability of tidal-fluvial dynamics in the St. Lawrence fluvial estuary: An application of nonstationary tidal harmonic analysis. Journal of Geophysical Research 119 (9): 5724–5744.  https://doi.org/10.1002/2014JC009791.Google Scholar
  30. Nguyen, A.D., and H.H.G. Savenije. 2006. Salt intrusion in multi-channel estuaries: A case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences 10 (5): 743–754.  https://doi.org/10.5194/hess-10-743-2006.CrossRefGoogle Scholar
  31. Parker, B.B. 1991. The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions. In Tidal hydrodynamics, ed. B.B. Parker, 236–268. New York: Wiley.Google Scholar
  32. Pittaluga, B.M., N. Tambroni, A. Canestrelli, R. Slingerland, S. Lanzoni, and G. Seminara. 2015. Where river and tide meet: The morphodynamic equilibrium of alluvial estuaries. Journal of Geophysical Research 120 (1): 75–94.  https://doi.org/10.1002/2014JF003233.Google Scholar
  33. Sassi, M.G., and A.J.F. Hoitink. 2013. River flow controls on tides and tide-mean water level profiles in a tidal freshwater river. Journal of Geophysical Research 118 (9): 4139–4151.  https://doi.org/10.1002/jgrc.20297.Google Scholar
  34. Savenije, H.H.G. 2005. Salinity and tides in alluvial estuaries. New York: Elsevier.Google Scholar
  35. Savenije HHG, 2012. Salinity and tides in alluvial estuaries (2nd completely revised edition). Available at www.salinityandtides.com.
  36. Savenije, H.H.G., Toffolon, M., Haas, J., Veling, E.J.M. 2008. Analytical description of tidal dynamics in convergent estuaries. Journal of Geophysical Research 113: C10025.  https://doi.org/10.1029/2007JC004408.
  37. Vignoli, G., Toffolon, M., Tubino, M. 2003. Non-linear frictional residual effects on tide propagation. In: Proceedings of XXX IAHR Congress, vol. A, 24–29 August 2003, Thessaloniki, Greece, 291–298, 2003.Google Scholar
  38. Wu, C.S., S.L. Yang, S.C. Huang, and J.B. Mu. 2016. Delta changes in the Pearl River estuary and its response to human activities (1954-2008). Quaternary International 392: 147–154.  https://doi.org/10.1016/j.quaint.2015.04.009.CrossRefGoogle Scholar
  39. Xia, X.M., Y. Li, H. Yang, C.Y. Wu, T.H. Sing, and H.K. Pong. 2004. Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China. Continental Shelf Research 24 (16): 1809–1826.  https://doi.org/10.1016/j.csr.2004.06.009.CrossRefGoogle Scholar
  40. Zhang, W., X.H. Ruan, J.H. Zheng, Y.L. Zhu, and H.X. Wu. 2010. Long-term change in tidal dynamics and its cause in the Pearl River Delta, China. Geomorphology 120 (3–4): 209–223.  https://doi.org/10.1016/j.geomorph.2010.03.031.CrossRefGoogle Scholar
  41. Zhang, E.F., H.H.G. Savenije, H. Wu, Y.Z. Kong, and J.R. Zhu. 2011. Analytical solution for salt intrusion in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science 91 (4): 492–501.  https://doi.org/10.1016/j.ecss.2010.11.008.CrossRefGoogle Scholar
  42. Zhang, E.F., H.H.G. Savenije, S.L. Chen, and X.H. Mao. 2012. An analytical solution for tidal propagation in the Yangtze Estuary, China. Hydrology and Earth System Sciences 16 (9): 3327–3339.  https://doi.org/10.5194/hess-16-3327-2012.CrossRefGoogle Scholar
  43. Zhang, W., X. Yang, A.J.F. Hoitink, M.G. Sassi, J.H. Zheng, X.W. Chen, and C. Zhang. 2015. Morphological change in the Pearl River Delta, China. Marine Geology 363: 202–219.  https://doi.org/10.1016/j.margeo.2015.02.012.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2018

Authors and Affiliations

  • Huayang Cai
    • 1
    • 2
    • 3
  • Qingshu Yang
    • 1
    • 2
    • 3
  • Zihao Zhang
    • 1
    • 2
    • 3
  • Xiaojuan Guo
    • 1
    • 2
    • 3
  • Feng Liu
    • 1
    • 2
    • 3
  • Suying Ou
    • 1
    • 2
    • 3
  1. 1.Institute of Estuarine and Coastal Research, School of Marine SciencesSun Yat-sen UniversityGuangzhouChina
  2. 2.State and Local Joint Engineering Laboratory of Estuarine Hydraulic TechnologyGuangzhouChina
  3. 3.Guangdong Provincial Key Laboratory of Marine Resources and Coastal EngineeringGuangzhouChina

Personalised recommendations