Advertisement

Estuaries and Coasts

, Volume 41, Issue 7, pp 2079–2091 | Cite as

Wetland Plant Diversity in a Coastal Nature Reserve in Italy: Relationships with Salinization and Eutrophication and Implications for Nature Conservation

  • Renato Gerdol
  • Lisa Brancaleoni
  • Lorenzo Lastrucci
  • Giovanni Nobili
  • Mauro Pellizzari
  • Michele Ravaglioli
  • Daniele Viciani
Article

Abstract

Wetlands are important centers of biodiversity. Coastal wetlands are subject to anthropogenic threats that can lead to biodiversity loss and consequent negative effects on nature conservation. We investigated relationships between wetland vegetation and habitat conditions in a coastal Nature Reserve in Northern Italy that has undergone seawater intrusion and eutrophication for several decades. The wetland vegetation in the Nature Reserve consisted of nine communities of hygrophytic and helophytic vegetation and five communities of waterplant vegetation. The hygrophytic and helophytic communities were arranged according to a salinity gradient, from salt-free habitats to strongly saline habitats. The saline habitats had high nutrient levels, due to the influx of nitrate-rich saltwater from an adjacent lagoon. The waterplant communities were all typical of freshwater habitats. Water-table depth and concentration of dissolved nutrients in the water were the main factors structuring waterplant vegetation. The main driver of future changes in the wetland vegetation of the Nature Reserve is the ongoing increase in salinity levels which may enhance expansion of halophilic species and communities, thus outcompeting locally rare freshwater species. If nutrient, especially nitrate, load further increases in the next future, this may exert negative effects on wetland species and communities preferring nutrient-poor habitats.

Keywords

Aquatic plants Biodiversity Nitrate Nutrient load Saline wedge Vegetation 

Notes

Acknowledgements

Prof. Giuseppe Castaldelli provided useful data and comments on nitrate loads. Dr. Roberta Marchesini did the chemical analyses. Mrs. Lorella Dell’Olmo and Dr. Roberta Marchesini assisted in drawing the maps. Mr. Mauro Menghini helped during the field work. All are kindly acknowledged. We wish to thank two anonymous reviewers for constructive criticism on a previous version of the paper. This study was partly financed by a Grant of Ferrara University to RG.

Supplementary material

12237_2018_396_MOESM1_ESM.docx (87 kb)
ESM 1 (DOCX 87 kb)

References

  1. Abeli, T., L. Brancaleoni, R. Marchesini, S. Orsenigo, G. Rossi, and R. Gerdol. 2017. Fertilizer application positively affects plants performance but reduces seed viability in seashore mallow (Kosteletzkya pentacarpos): Implication for biomass production and species conservation. Annals of Applied Biology 170 (1): 263–272.  https://doi.org/10.2179/11-022. CrossRefGoogle Scholar
  2. Angelini, P., L. Casella, A. Grignetti, and P. Genovesi. 2016. Manuali per il monitoraggio di specie e habitat di interesse comunitario (Direttiva 92/43/CEE) in Italia: habitat. ISPRA, Serie Manuali e linee guida, 142/2016. Rome: ISPRA.Google Scholar
  3. Angiolini, C., D. Viciani, G. Bonari, and L. Lastrucci. 2017. Habitat conservation prioritization: A floristic approach applied to a Mediterranean wetland network. Plant Biosystems 151 (4): 598–612.  https://doi.org/10.1080/11263504.2016.1187678.CrossRefGoogle Scholar
  4. Antonellini, M., D.M. Allen, P.N. Mollema, D. Capo, and N. Greggio. 2015. Groundwater freshening following coastal progradation and land reclamation of the Po plain, Italy. Hydrogeology Journal 23 (5): 1009–1026.  https://doi.org/10.1007/s10040-015-1263-0.CrossRefGoogle Scholar
  5. Bakker, C., J. Rodenburg, and P.M. van Bodegom. 2005. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant and Soil 275 (1-2): 111–122.  https://doi.org/10.1007/s11104-005-0438-1.CrossRefGoogle Scholar
  6. Bedford, B.L., D.J. Leopold, and J.P. Gibbs. 2001. Wetlands ecosystems. In Encyclopedia of Biodiversity (4th vol), ed. S.A. Levin, 781–804. Orlando: Academic Press.CrossRefGoogle Scholar
  7. Bernhardt, K.G., and M. Kropf. 2006. Schoenus nigricans (Cyperaceae) xerophytic grasslands on the NE Adriatic islands Cres and Krk (Croatia). Acta Botanica Croatica 65: 127–136.Google Scholar
  8. Bilz, M., S.P. Kell, N. Maxted, and R.V. Lansdown. 2011. European red list of vascular plants. Luxembourg: Publications Office of the European Union.Google Scholar
  9. Biondi, E. 2011. Phytosociology today: Methodological and conceptual evolution. Plant Biosystems 145 (Suppl): 19–29.  https://doi.org/10.1080/11263504.2011.602748.CrossRefGoogle Scholar
  10. Biondi, E., and C. Blasi. 2009. Manuale italiano di interpretazione degli Habitat della Direttiva 92/43/CEE. http://vnr.unipg.it/habitat. Accessed 18 May 2017.
  11. Braun-Blanquet, J. 1932. Plant sociology: The study of plant communities. New York: McGraw-Hill.Google Scholar
  12. Brock, M.A., D.L. Nielsen, and K. Crosslé. 2005. Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshwater Biology 50 (8): 1376–1390.  https://doi.org/10.1111/j.1365-2427.2005.01408.x.CrossRefGoogle Scholar
  13. Brullo, S., F. Scelsi, and G. Spampinato. 2001. La vegetazione dell’Aspromonte. Studio fitosociologico. Laruffa: Reggio Calabria.Google Scholar
  14. Buchwald, R. 1994. Vegetazione e odonatofauna negli ambienti acquatici dell’Italia Centrale. Braun-Blanquetia 11: 3–77.Google Scholar
  15. Caschetto, M., N. Colombani, M. Mastrocicco, M. Petitta, and R. Aravena. 2016. Estimating groundwater residence time and recharge patterns in a saline coastal aquifer. Hydrological Processes 30 (22): 4202–4213.  https://doi.org/10.1002/hyp.10942.CrossRefGoogle Scholar
  16. Castaldelli, G., E. Soana, E. Racchetti, E. Pierobon, M. Mastrocicco, E. Tesini, E.A. Fano, and M. Bartoli. 2013. Nitrogen budget in a lowland coastal area within the Po River basin (Northern Italy): Multiple evidences of equilibrium between sources and internal sinks. Environmental Management 52 (3): 567–580.  https://doi.org/10.1007/s00267-013-0052-6.CrossRefGoogle Scholar
  17. Ceschin, S., V. Zuccarello, and G. Caneva. 2010. Role of macrophyte communities as bioindicators of water quality: Application on the Tiber River basin (Italy). Plant Biosystems 144 (3): 528–536.  https://doi.org/10.1080/11263500903429221.CrossRefGoogle Scholar
  18. Commission of the European Community. 1992. Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L206. 22 July 1992 (Consolidated version 1 January 2007).Google Scholar
  19. Commission of the European Community. 2013. Interpretation manual of European Union habitats, vers. EUR28. Brussel: European Commission, DG Environment.Google Scholar
  20. Davis, J.A., and R. Froend. 1999. Loss and degradation of wetlands in southwestern Australia: Underlying causes, consequences and solutions. Wetlands Ecology and Management 7 (1): 13–23.  https://doi.org/10.1023/A:1008400404021. CrossRefGoogle Scholar
  21. Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490: 388–392.  https://doi.org/10.1038/nature11533.CrossRefGoogle Scholar
  22. Den Hartog, C., and S. Segal. 1964. A new classification of the water-plant communities. Acta Botanica Neerlandica 13 (3): 367–393.  https://doi.org/10.1111/j.1438-8677.1964.tb00163.x.CrossRefGoogle Scholar
  23. Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences of the United States of America 98 (25): 14218–14223.  https://doi.org/10.1073/pnas.251209298.CrossRefGoogle Scholar
  24. Dudgeon, D., A.H. Arthington, M.O. Gessner, Z. Kawabata, D.J. Knowler, C. Lévêque, and C.A. Sullivan. 2006. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81 (02): 16–182.  https://doi.org/10.1017/S1464793105006950. CrossRefGoogle Scholar
  25. Edvardsen, A., and R.H. Økland. 2006. Variation in plant species richness in and adjacent to 64 ponds in SE Norwegian agricultural landscapes. Aquatic Botany 85 (2): 79–91.  https://doi.org/10.1016/j.aquabot.2006.01.015. CrossRefGoogle Scholar
  26. Evans, D., and M. Arvela. 2011. Assessment and reporting under article 17 of the habitats directive. Explanatory notes & guidelines for the period 2007–2012. Final version. July 2011. ETC-BD. European Commission, Brussel.Google Scholar
  27. Florencio, M., L. Serrano, P. Siljestrom, R. Fernandez-Zamudio, P. Garcia-Murillo, and C. Díaz-Paniagua. 2014. The influence of geomorphology on the composition of aquatic flora and fauna within a temporary pond network. Limnetica 33: 327–340.Google Scholar
  28. García-Madrid, A.S., J.A. Molina, and P. Cantó. 2014. Classification of habitats highlights priorities for conservation policies: The case of Spanish Mediterranean tall humid herb grasslands. Journal for Nature Conservation 22 (2): 142–156.  https://doi.org/10.1016/j.jnc.2013.10.002.CrossRefGoogle Scholar
  29. Géhu, J.M., and E. Biondi. 1988. Données sur la végétation des ceintures d’atterrissement des lacs Alimini (Salento, Italie). Documents Phytosociologiques 11: 353–380.Google Scholar
  30. Gerdol, R., C. Ferrari, and F. Piccoli. 1985. Correlation between soil characters and forest types: A study in multiple discriminant analysis. Vegetatio 60 (1): 49–56.  https://doi.org/10.1007/BF00053911.CrossRefGoogle Scholar
  31. Gigante, D., F. Attorre, R. Venanzoni, A.T.R. Acosta, E. Agrillo, M. Aleffi, and S. Zitti. 2016. A methodological protocol for annex I habitat monitoring: The contribution of vegetation science. Plant Sociology 53: 77–87.  https://doi.org/10.7338/pls2016532/06. CrossRefGoogle Scholar
  32. Hrivnák, R., J. Kochjarová, H. Otáhelóvá, P. Palóve-Balang, M. Slezák, and P. Slezák. 2014. Environmental drivers of macrophyte species richness in artificial and natural aquatic water bodies—Comparative approach from two central European regions. Annales de Limnologie – International Journal of Limnology 50 (4): 269–278.  https://doi.org/10.1051/limn/2014020.CrossRefGoogle Scholar
  33. Janssen, J.A.M. et al. 2016. European red list of habitats. Part 2. Terrestrial and freshwater habitats. England: European Union, pp. 44.  https://doi.org/10.2779/091372. http://ec.europa.eu/environment/nature/knowledge/pdf/terrestrial_EU_red_list_report.pdf.
  34. Klosowski, S., and E. Jablońska. 2009. Aquatic and swamp plant communities as indicators of habitat properties of astatic water bodies in North-Eastern Poland. Limnologica 39 (2): 115–127.  https://doi.org/10.1016/j.limno.2008.01.003. CrossRefGoogle Scholar
  35. Lacoul, P., and B. Freedman. 2006. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquatic Botany 84 (1): 3–16.  https://doi.org/10.1016/j.aquabot.2005.06.011.CrossRefGoogle Scholar
  36. Lambert-Servien, E., G. Clemenceau, O. Gabory, E. Douillard, and J. Haury. 2006. Stoneworts (Characeae) and associated macrophyte species as indicators of water quality and human activities in the Pays-de-la-Loire region, France. Hydrobiologia 570 (1): 107–115.  https://doi.org/10.1007/s10750-006-0169-1.CrossRefGoogle Scholar
  37. Landucci, F., D. Gigante, R. Venanzoni, and M. Chytrý. 2013. Wetland vegetation of the class Phragmito-Magno-Caricetea in Central Italy. Phytocoenologia 43 (1): 67–100.  https://doi.org/10.1127/0340-269X/2013/0043-0545.CrossRefGoogle Scholar
  38. Lastrucci, L., G. Bonari, C. Angiolini, F. Casini, T. Giallonardo, D. Gigante, M. Landi, F. Landucci, R. Venanzoni, and D. Viciani. 2014. Vegetation of lakes Chiusi and Montepulciano (Siena, Central Italy): Updated knowledge and new discoveries. Plant Sociology 51: 29–55.  https://doi.org/10.7338/pls2014512/03. CrossRefGoogle Scholar
  39. Lastrucci, L.L., T. Guidi Lazzaro, V. Gonnelli, P. Giordani, and R. Benesperi. 2015. Different components of plant diversity suggest the protection of a large area for the conservation of a riparian ecosystem. Biologia 70 (8): 1033–1041.  https://doi.org/10.1515/biolog-2015-0115. CrossRefGoogle Scholar
  40. Lissner, J., and H.H. Schierup. 1997. Effects of salinity on the growth of Phragmites australis. Aquatic Botany 55 (4): 247–260.  https://doi.org/10.1016/S0304-3770(96)01085-6.CrossRefGoogle Scholar
  41. Lundholm, J.T. 2009. Plant species diversity and environmental heterogeneity: Spatial scale and competing hypotheses. Journal of Vegetation Science 20 (3): 377–391.  https://doi.org/10.1111/j.1654-1103.2009.05577.x.CrossRefGoogle Scholar
  42. Melendo, M., E. Cano, and F. Valle. 2003. Synopsis of aquatic plant-communities of the class Potametea in the southern Iberian Peninsula. Acta Botanica Gallica 150 (4): 429–444.CrossRefGoogle Scholar
  43. Nicholls, R.J., F.M.J. Hoozemans, and M. Marchand. 1999. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Global Environmental Change 9: 69–87.  https://doi.org/10.1016/S0959-3780(99)00019-9.CrossRefGoogle Scholar
  44. Orlóci, L. 1978. Multivariate analysis in vegetation research. 2nd ed. The Hague: Junk.Google Scholar
  45. Pellizzari, M., and F. Piccoli. 2001. La vegetazione dei corpi idrici del Bosco della Mesola (Delta del Po). Quaderni della Stazione Ecologica del Civico Museo di Storia Naturale di Ferrara 13: 7–24.Google Scholar
  46. Piccoli, F., and R. Gerdol. 1984. Typology and dynamics of a wood in the Po plane (N-Italy): The “Bosco della Mesola”. Colloques Phytosociologiques 9: 161–170.Google Scholar
  47. Piccoli, F., R. Gerdol, and C. Ferrari. 1983. Carta della vegetazione del Bosco della Mesola (Ferrara). Atti dell’Istituto Botanico e Laboratorio Crittogamico dell’Università di Pavia 7 (2): 3–23.Google Scholar
  48. Piccoli, F., M. Pellizzari, and A. Alessandrini. 2014. Flora del Ferrarese. Istituto per i Beni Artistici e Culturali. Regione Emilia-Romagna. Bologna: Longo.Google Scholar
  49. Pott, R. 2011. Phytosociology: A modern geobotanical method. Plant Biosystems 145 (Suppl): 9–18.  https://doi.org/10.1080/11263504.2011.602740.CrossRefGoogle Scholar
  50. Rossi, G., S. Orsenigo, C. Montagnani, G. Fenu, D. Gargano, L. Peruzzi, R.P. Wagensommer, B. Foggi, G. Bacchetta, G. Domina, F. Conti, F. Bartolucci, M. Gennai, S. Ravera, A. Cogoni, S. Magrini, R. Gentili, M. Castello, C. Blasi, and T. Abeli. 2016. Is legal protection sufficient to ensure plant conservation? The Italian Red List of policy species as a case study. Oryx 50 (03): 431–436.  https://doi.org/10.1017/S003060531500006X.CrossRefGoogle Scholar
  51. Sakurai, Y., K. Yabe, and K. Katagiri. 2017. Factors controlling changes in the aquatic macrophyte communities from 1984 to 2009 in a pond in the cool-temperate zone of Japan. Limnology 18 (2): 153–166.  https://doi.org/10.1007/s10201-016-0498-3.CrossRefGoogle Scholar
  52. Sousa, A., A.I. Lillebø, I. Caçador, and M. Pardal. 2008. Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems. Environmental Pollution 156 (3): 628–635.  https://doi.org/10.1016/j.envpol.2008.06.022.CrossRefGoogle Scholar
  53. Spalding, E.A., and M.W. Hester. 2007. Interactive effects of hydrology and salinity on oligohaline plant species productivity: Implications of relative sea-level rise. Estuaries and Coasts 30 (2): 214–225.CrossRefGoogle Scholar
  54. Stampi, P. 1966. Il Gran bosco della Mesola (Ferrara): notizie storiche, floristiche e geobotaniche. Annali di Botanica (Roma) 28: 599–612.Google Scholar
  55. Tappin, A.D. 2002. An examination of the fluxes of nitrogen and phosphorus in temperate and tropical estuaries: Current estimates and uncertainties. Estuarine Coastal and Shelf Science 55 (6): 885–901.  https://doi.org/10.1006/ecss.2002.1034.CrossRefGoogle Scholar
  56. ter Braak, C.J.F., and P. Šmilauer. 2012. Canoco reference manual and User’s guide: Software for ordination (version 5.0). Ithaca: Microcomputer Power.Google Scholar
  57. Turner, R.E. 1990. Landscape development and coastal wetland losses in the Northern Gulf of Mexico. American Zoologist 30 (1): 89–105.CrossRefGoogle Scholar
  58. Turner, B.L. 2008. Resource partitioning for soil phosphorus: A hypothesis. Journal of Ecology 96 (4): 698–702.  https://doi.org/10.1111/j.1365-2745.2008.01384.x.CrossRefGoogle Scholar
  59. Van der Maarel, E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97–144.CrossRefGoogle Scholar
  60. Viciani, D., L. Lastrucci, L. Dell’Olmo, G. Ferretti, and B. Foggi. 2014. Natura 2000 habitats in Tuscany (Central Italy): Synthesis of main conservation features based on a comprehensive database. Biodiversity and Conservation 23 (6): 1551–1576.  https://doi.org/10.1007/s10531-014-0686-6.CrossRefGoogle Scholar
  61. Viciani, D., L. Dell’Olmo, C. Vicenti, and L. Lastrucci. 2017. Natura 2000 protected habitats, Massaciuccoli Lake (northern Tuscany, Italy). Journal of Maps 13: 219–226.CrossRefGoogle Scholar
  62. Watt, S.C.L., E.G. Berthou, and L. Vilar. 2007. The influence of water level and salinity on plant assemblages of a seasonally flooded Mediterranean wetland. Plant Ecology 189 (1): 71–85.  https://doi.org/10.1007/s11258-006-9167-7.CrossRefGoogle Scholar
  63. Zaldivar, J.M., A.C. Cardoso, P. Viaroli, A. Newton, R. de Wit, C. Ibanez, S. Reizopoulou, F. Somma, A. Razinkovas, A. Basset, M. Holmer, and N. Murray. 2008. Eutrophication in transitional waters: an overview. Transitional Waters Monographies 1: 1–78.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2018

Authors and Affiliations

  1. 1.Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
  2. 2.Botanical GardenUniversity of FerraraFerraraItaly
  3. 3.Department of BiologyUniversity of FlorenceFlorenceItaly
  4. 4.Carabinieri per la Biodiversità di Punta MarinaPunta MarinaItaly
  5. 5.Istituto Comprensivo “Bentivoglio”Poggio RenaticoItaly

Personalised recommendations