Advertisement

Estuaries and Coasts

, Volume 41, Issue 7, pp 2056–2069 | Cite as

Reconstructing Aragonite Saturation State Based on an Empirical Relationship for Northern California

  • Catherine V. Davis
  • Kathryn Hewett
  • Tessa M. Hill
  • John L. Largier
  • Brian Gaylord
  • Jaime Jahncke
Article

Abstract

Ocean acidification is a global phenomenon with highly regional spatial and temporal patterns. In order to address the challenges of future ocean acidification at a regional scale, it is necessary to increase the resolution of spatial and temporal monitoring of the inorganic carbon system beyond what is currently available. One approach is to develop empirical regional models that enable aragonite saturation state to be estimated from existing hydrographic measurements, for which greater spatial coverage and longer time series exist in addition to higher spatial and temporal resolution. We present such a relationship for aragonite saturation state for waters off Northern California based on in situ bottle sampling and instrumental measurements of temperature, salinity, and dissolved oxygen. Application of this relationship to existing datasets (5 to 200 m depth) demonstrates both seasonal and interannual variability in aragonite saturation state. We document a deeper aragonite saturation horizon and higher near surface aragonite saturation state in the summers of 2014 and 2015 (compared with 2010–2013), associated with anomalous warm conditions and decadal scale oscillations. Application of this model to time series data reiterates the direct association between low aragonite saturation state and upwelled waters and highlights the extent to which benthic communities on the Northern California shelf are already exposed to aragonite undersaturated waters.

Keywords

Ocean acidification Upwelling California Current System Aragonite saturation 

Notes

Acknowledgements

We would like to thank D. Dann, M.G. Susner, D. Lipski, J. Roletto, and the crew of the R/V Fulmar for assistance in the field and A. Ninokawa and J. Hosfelt for laboratory support. The authors would also like to thank E. Sanford, J. Hower, M. Elliott, and N. Karnovsky.

All oceanographic data are available upon request from the Bodega Marine Laboratory (Bodega Line/BOON) and Point Blue (ACCESS: http://www.pointblue.org/datasharing).

Funding Information

This work was supported by the National Science Foundation OCE No. 144451 to TMH and California Sea Grant R/HCME-04 to JLL. Support for BOON and the Bodega Line data was received from UC Davis, Sonoma County Water Agency, and the Central and Northern California Ocean Observing System (CeNCOOS).

This research was supported in part by the Applied California Current Ecosystem Studies (ACCESS) partnership, a continuing collaboration between Point Blue Conservation Science, the Greater Farallones National Marine Sanctuary, and Cordell Bank National Marine Sanctuary. The authors thank the Angell Family Foundation, Bently Foundation, Bonnel Cove Foundation, Boring Family Foundation, Elinor Paterson Baker Trust, Faucett Catalyst Fund, Firedoll Foundation, Hellman Family Foundation, Moore Family Foundation, Pacific Life Foundation, Susie Tompkins Buell Foundation, Wendy P. McCaw Foundation, Thelma Doelger Trust, and the many Point Blue donors who have helped fund ACCESS work over the years. This is Point Blue Conservation Science contribution number 2106 and a contribution of Bodega Marine Laboratory.

Supplementary material

12237_2018_372_MOESM1_ESM.pdf (146 kb)
ESM 1 (PDF 146 kb)

References

  1. Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19 (6): 716–723.  https://doi.org/10.1109/TAC.1974.1100705.CrossRefGoogle Scholar
  2. Alin, S.R., R.A. Feely, A.G. Dickson, J.M. Hernández-Ayón, L.W. Juranek, M.D. Ohman, and R. Goericke. 2012. Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to Cal COFI hydrographic cruise data (2005–2011). Journal of Geophysical Research: Oceans 117 (5): C05033.Google Scholar
  3. Bakun, A. 1990. Global climate change and intensification of coastal ocean upwelling. Science 247 (4939): 198–201.  https://doi.org/10.1126/science.247.4939.198.CrossRefGoogle Scholar
  4. Bakun, A., B. Black, S.J. Bograd, M. Garcia-Reyes, A. Miller, R. Rykaczewski, and W. Sydeman. 2015. Anticipated effects of climate change on coastal upwelling ecosystems. Current Climate Change Reports 1 (2): 85–93.  https://doi.org/10.1007/s40641-015-0008-4.CrossRefGoogle Scholar
  5. Bograd, S.J., I. Schroeder, N. Sarkar, X. Qiu, W.J. Sydeman, and F.B. Schwing. 2009. Phenology of coastal upwelling in the California Current. Geophysical Research Letters 36 (1): L01602.CrossRefGoogle Scholar
  6. Bond, N.A., M.F. Cronin, H. Freeland, and N. Mantua. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters 42 (9): 3414–3420.  https://doi.org/10.1002/2015GL063306.CrossRefGoogle Scholar
  7. Broecker, W.S., and T.H. Peng. 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University.Google Scholar
  8. Caldeira, K., and M.E. Wickett. 2003. Oceanography: anthropogenic carbon and ocean pH. Nature 425 (6956): 365–365.  https://doi.org/10.1038/425365a.CrossRefGoogle Scholar
  9. Canadell, J.G., C. Le Quéré, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, and G. Marland. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences 104 (47): 18866–18870.  https://doi.org/10.1073/pnas.0702737104.CrossRefGoogle Scholar
  10. Canty, A. and B. Ripley. 2016. Boot: Bootstrap R (S-Plus) functions. R package version 1.3–18.Google Scholar
  11. Chan, F., J.A. Barth, C.A. Blanchette, R.H. Byrne, F. Chavez, O. Cheriton, R.A. Feely, G. Friederich, B. Gaylord, T. Gouhier, S. Hacker, T. Hill, G. Hofmann, M.A. McManus, B.A. Menge, K.J. Nielson, A. Russell, E. Sanford, J. Sevadjian, and L. Washburn. 2017. Persistent spatial structuring of coastal ocean acidification in the California Current System. Scientific Reports 7 (1): 2526.  https://doi.org/10.1038/s41598-017-02777-y.CrossRefGoogle Scholar
  12. Dickson, A.G. 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Research 37: 755–766.CrossRefGoogle Scholar
  13. Dickson, A.G., C.L. Sabine and J.R. Christian. 2007. SOP 6b: determination of the pH of sea water using the indicator dye m-cresol purple. Guide to best practices for ocean CO2 measurements. Sidney: North Pacific Marine Science Organization.Google Scholar
  14. Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1 (1): 169–192.  https://doi.org/10.1146/annurev.marine.010908.163834.CrossRefGoogle Scholar
  15. Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science: Journal du Conseil 65 (3): 414–432.  https://doi.org/10.1093/icesjms/fsn048.CrossRefGoogle Scholar
  16. Fassbender, A.J., C.L. Sabine, R.A. Feely, C. Langdon, and C.W. Mordy. 2011. Inorganic carbon dynamics during Northern California coastal upwelling. Continental Shelf Research 31 (11): 1180–1192.  https://doi.org/10.1016/j.csr.2011.04.006.CrossRefGoogle Scholar
  17. Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305 (5682): 362–366.  https://doi.org/10.1126/science.1097329.CrossRefGoogle Scholar
  18. Feely, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22 (4): 36–47.  https://doi.org/10.5670/oceanog.2009.95.CrossRefGoogle Scholar
  19. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320 (5882): 1490–1492.  https://doi.org/10.1126/science.1155676.CrossRefGoogle Scholar
  20. Feely, R.A., S.R. Alin, B. Carter, N. Bednarsek, B. Hales, F. Chan, T.M. Hill, B. Gaylord, E. Sanford, R.H. Byrne, C.L. Sabine, D. Greeley, and L. Juranek. 2016. Chemical and biological impacts of ocean acidification along the west coast of North America: Estuarine. Coastal and Shelf. Science 183: 260–270.  https://doi.org/10.1016/j.ecss.2016.08.043.CrossRefGoogle Scholar
  21. García-Reyes, M., and J. Largier. 2010. Observations of increased wind-driven coastal upwelling off Central California. Journal of Geophysical Research 115: C04011.  https://doi.org/10.1029/2009JC005576.CrossRefGoogle Scholar
  22. García-Reyes, M., and J.L. Largier. 2012. Seasonality of coastal upwelling off central and northern California: New insights, including temporal and spatial variability. Journal of Geophysical Research Oceans 117 (3): C03028.Google Scholar
  23. García-Reyes, M., W.J. Sydeman, D.S. Schoeman, R.R. Rykaczewski, B.A. Black, A.J. Smit, and S.J. Bograd. 2015. Under pressure: climate change, upwelling, and eastern boundary upwelling ecosystems. Frontiers in Marine Science 2: 109.CrossRefGoogle Scholar
  24. Gay, P.S., and T.K. Chereskin. 2009. Mean structure and seasonal vari- ability of the poleward undercurrent off southern California. Journal of Geophysical Research 114: C02007.  https://doi.org/10.1029/2008JC004886.CrossRefGoogle Scholar
  25. Gentemann, C.L., M.R. Fewings, and M. Garcia-Reyes. 2017. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northwest Pacific marine heat wave. Geophysical Research Letters 4 (1): 312–319.CrossRefGoogle Scholar
  26. Gruber, N., C. Hauri, Z. Lachkar, D. Loher, T.L. Frölicher, and G. Plattner. 2012. Rapid progression of ocean acidification in the California Current System. Science 337 (6091): 220–223.  https://doi.org/10.1126/science.1216773.CrossRefGoogle Scholar
  27. Hales, B., T. Takahashi, and L. Bandstra. 2005. Atmospheric CO2 uptake by a coastal upwelling system. Global Biogeochemical Cycles 19: GB1009.CrossRefGoogle Scholar
  28. Halle, C.M., and J.L. Largier. 2011. Surface circulation downstream of the Point Arena upwelling center. Continental Shelf Research 31 (12): 1260–1272.  https://doi.org/10.1016/j.csr.2011.04.007.CrossRefGoogle Scholar
  29. Hauri, C., N. Gruber, M. Vogt, S.C. Doney, R.A. Feely, Z. Lachkar, A. Leinweber, A.M.P. McDonnell, M. Munnich, and G.K. Plattner. 2013. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10 (1): 193–216.  https://doi.org/10.5194/bg-10-193-2013.CrossRefGoogle Scholar
  30. Harris, K.E., M.D. DeGrandpre, and B. Hales. 2013. Aragonite saturation state dynamics in a coastal upwelling zone. Geophysical Research Letters 40 (11): 2720–2725.  https://doi.org/10.1002/grl.50460.CrossRefGoogle Scholar
  31. Hickey, B.M. 1979. The California current system—Hypotheses and facts. Progress in Oceanography 8e(4): 191–279.CrossRefGoogle Scholar
  32. Hickey, B.M. 1998. Coastal oceanography of western North America from the tip of Baja California to Vancouver Island. In The global Coastal Ocean: Regional studies and syntheses, ed. A.R. Robinson and K.H. Brink, vol. vol. 11. New York: Wiley.Google Scholar
  33. Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, B. Peterson, Y. Takeshita, P.G. Matson, E.D. Crook, K.J. Kroeker, M.C. Gambi, E.B. Rivest, C.A. Frieder, P.C. Yu, and T.R. Martz. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6 (12): e28983.  https://doi.org/10.1371/journal.pone.0028983.CrossRefGoogle Scholar
  34. Huyer, A. 1998. Coastal upwelling in the California Current System. Progress in Oceanography 12 (3): 259–284.  https://doi.org/10.1016/0079-6611(83)90010-1.CrossRefGoogle Scholar
  35. Huyer, A., J. Barth, P. Kosro, R. Shearman, and R. Smith. 1998. Upper- Ocean water mass characteristics of the California current, summer 1993. Deep Sea Research Part II 45 (8–9): 1411–1442.CrossRefGoogle Scholar
  36. Jacox, M.G., J. Fiechter, A.M. Moore, and C.A. Edwards. 2015. ENSO and the California Current coastal upwelling response. Journal of Geophysical Research: Oceans 120 (3): 1691–1702.  https://doi.org/10.1002/2014JC010650.CrossRefGoogle Scholar
  37. Juranek, L.W., R.A. Feely, W.T. Peterson, S.R. Alin, B. Hales, K. Lee, C.L. Sabine, and J. Peterson. 2009. A novel method for determination of aragonite saturation state on the continental shelf of central Oregon using multi-parameter relationships with hydrographic data. Geophysical Research Letters 36 (24): L24601.  https://doi.org/10.1029/2009GL040778.CrossRefGoogle Scholar
  38. Kaplan, D.M., and J.L. Largier. 2006. HF radar-derived origin and destination of surface waters off Bodega Bay, California. Deep-Sea Research II 53 (25-26): 2906–2930.  https://doi.org/10.1016/j.dsr2.2006.07.012.CrossRefGoogle Scholar
  39. Kelly, M.W., J.L. Padilla- Gamiño, and G.E. Hofmann. 2013. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Global Change Biology 19 (8): 2536–2546.  https://doi.org/10.1111/gcb.12251.CrossRefGoogle Scholar
  40. Kleypas, J.A., R.W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and B.N. Opdyke. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284 (5411): 118–120.  https://doi.org/10.1126/science.284.5411.118.CrossRefGoogle Scholar
  41. Largier, J.L., B.A. Magnell, and C.D. Winant. 1993. Subtidal circulation over the Northern California shelf. Journal of Geophysical Research 98 (C10): 18147–18179.  https://doi.org/10.1029/93JC01074.CrossRefGoogle Scholar
  42. Largier, J.L., C.A. Lawrence, M. Roughan, D.M. Kaplan, E.P. Dever, C.E. Dorman, R.M. Kudela, S.M. Bollens, F.P. Wilkerson, R.C. Dugdale, L.W. Botsford, N. Garfield, B. Kuebel-Cervantes, and D. Koracin. 2006. WEST: a Northern California study of the role of wind-driven transport in the productivity of coastal plankton communities. Deep Sea Research II 53 (25–26): 2833–2849.  https://doi.org/10.1016/j.dsr2.2006.08.018.CrossRefGoogle Scholar
  43. Lee, M.Y., C.C. Hong, and H.H. Hsu. 2015. Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophysical Research Letters 42 (5): 1612–1618.  https://doi.org/10.1002/2014GL062956.CrossRefGoogle Scholar
  44. Leising, A.W., I.D. Schroeder, S.J. Bograd, J. Abell, R. Durazo, G. Gaxiola-Castro, E.P. Bjorkstedt, J. Field, K. Sakuma, and R.R. Robertson. 2015. State of the California Current 2014-15: Impacts of the Warm-Water “Blob.” CalCOFI Report, 56:31–68.Google Scholar
  45. Lynn, R.J., and J.J. Simpson. 1987. The California Current System: the seasonal variability of its physical characteristics. Journal of Geophysical Research: Oceans 92 (12): 12947–12966.  https://doi.org/10.1029/JC092iC12p12947.CrossRefGoogle Scholar
  46. Meinvielle, M., and G.C. Johnson. 2013. Decadal water-property trends in the California Undercurrent, with implications for ocean acidification. Journal of Geophysical Research: Oceans 118 (12): 6687–6703.  https://doi.org/10.1002/2013JC009299.CrossRefGoogle Scholar
  47. Millero, F.J. 2010. Carbonate constants for estuarine waters. Marine and Freshwater Research 61: 139–142.CrossRefGoogle Scholar
  48. Mote, P.W., and N.J. Manuta. 2002. Coastal upwelling in a warmer future. Geophysical Research Letters 29 (23): 2138–2142.CrossRefGoogle Scholar
  49. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.-K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.-F. Weirig, Y. Yamanaka, and A. Yool. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437 (7059): 681–686.  https://doi.org/10.1038/nature04095.CrossRefGoogle Scholar
  50. Parker, L., P.M. Ross, and W.A. O’Connor. 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Marine Biology 158 (3): 689–697.  https://doi.org/10.1007/s00227-010-1592-4.CrossRefGoogle Scholar
  51. Paquin, A. 2012. The green thread: seasonal and event scale forcing of phytoplankton abundance and taxonomic composition in the surfzone of open-coast, rocky shore. MS Thesis. Sonoma State University. http://hdl.handle.net/10211.3/121491
  52. Pennington, T.J., and F.P. Chavez. 2000. Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989–1996 in Monterey Bay, California. Deep Sea Research Part II 47 (5–6): 947–973.CrossRefGoogle Scholar
  53. Pickard, G.L. 1964. Descriptive physical oceanography. New York: Pergamon.Google Scholar
  54. Pierce, S.D., J.A. Barth, R.K. Shearman, and A.Y. Erofeev. 2012. Declining oxygen in the Northeast Pacific. Journal of Physical Oceanography 42: 495–501.CrossRefGoogle Scholar
  55. R Core Team. 2013. A language and environment for statistical computing. Vienna: Austria.Google Scholar
  56. Reid, J.L., G.I. Roden, and J.G. Wyllie. 1958. Studies of the California current system, CalCOFI Prog. Rep. 7–1-56 to 1–1-58, 27–56. Sacramento: Department of Fish and Game.Google Scholar
  57. Robbins, L.L., M.E. Hansen, J.A. Kleypas and S.C. Meylan. 2010. CO2calc—a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). Reston: U.S. Geological Survey.Google Scholar
  58. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C. Wong, D.W. Wallace, and B. Tilbrook. 2004. The oceanic sink for anthropogenic CO2. Science 305 (5682): 367–371.  https://doi.org/10.1126/science.1097403.CrossRefGoogle Scholar
  59. Sabine, C.L., and R.A. Feely. 2007. The oceanic sink for carbon dioxide. In Greenhouse gas sinks, ed. D. Reay et al., 31–49. Oxfordshire, U. K.: CABI.  https://doi.org/10.1079/9781845931896.0031.CrossRefGoogle Scholar
  60. Send, U., R.C. Beardsley, and C.D. Winant. 1987. Relaxation from upwelling in the Coastal Ocean Dynamics Experiment. Journal of Geophysical Research 92 (C2): 1683–1698.  https://doi.org/10.1029/JC092iC02p01683.CrossRefGoogle Scholar
  61. Scannell, H.A., A.J. Pershing, M.A. Alexander, A.C. Thomas, and K.E. Mills. 2016. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophysical Research Letters 43 (5): 2069–2076.  https://doi.org/10.1002/2015GL067308.CrossRefGoogle Scholar
  62. Snyder, M.A., L.C. Sloan, N.S. Diffenbaugh, and J.L. Bell. 2003. Future climate change and upwelling in the California Current. Geophysical Research Letters 30 (15): 1823.CrossRefGoogle Scholar
  63. Stramma, L., T. Fischer, D.S. Grundle, G. Krahmann, H.W. Bange, and C.A. Marandino. 2016. Transition to El Niño conditions in the eastern tropical Pacific in October 2015. Ocean Science 12 (4): 861–873.  https://doi.org/10.5194/os-12-861-2016.CrossRefGoogle Scholar
  64. Sverdrup, H.U., R.H. Fleming, and M.W. Johnson. 1942. The oceans, their physics, chemistry, and general biology. New York: Prentice Hall.Google Scholar
  65. Sydeman, W., M. García-Reyes, D. Schoeman, R. Rykaczewski, S. Thompson, B. Black, and S. Bograd. 2014. Climate change and wind intensification in coastal upwelling ecosystems. Science 345 (6192): 77–80.  https://doi.org/10.1126/science.1251635.CrossRefGoogle Scholar
  66. Thomson, R.E., and M.V. Krassovski. 2010. Poleward reach of the California undercurrent extension. Journal of Geophysical Research 115: C09027.  https://doi.org/10.1029/2010JC006280.CrossRefGoogle Scholar
  67. Varela, R., I. Álvarez, F. Santos, M. deCastro, and M. Gómez-Gesteira. 2015. Has upwelling strengthened along worldwide coasts over 1982–2010? Scientific Reports 5 (1): 10016.  https://doi.org/10.1038/srep10016.CrossRefGoogle Scholar
  68. Walther, K., K. Anger, and H.-O. Pörtner. 2010. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54 vs. 79 N). Marine Ecology Progress Series 417: 159–170.  https://doi.org/10.3354/meps08807.CrossRefGoogle Scholar
  69. Wang, D., T.C. Gouhier, B.A. Menge, and A.R. Ganguly. 2015. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518 (7539): 390–394.  https://doi.org/10.1038/nature14235.CrossRefGoogle Scholar
  70. Whitney, F.A. 2015. Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophysical Research Letters 42 (2): 428–431.  https://doi.org/10.1002/2014GL062634.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2018

Authors and Affiliations

  • Catherine V. Davis
    • 1
    • 2
    • 3
    • 4
  • Kathryn Hewett
    • 1
    • 5
  • Tessa M. Hill
    • 1
    • 4
  • John L. Largier
    • 1
    • 5
  • Brian Gaylord
    • 1
    • 6
  • Jaime Jahncke
    • 2
  1. 1.Bodega Marine LaboratoryUniversity of California at DavisBodega BayUSA
  2. 2.Point Blue Conservation SciencePetalumaUSA
  3. 3.Department of Earth & Planetary SciencesUniversity of California DavisDavisUSA
  4. 4.School of the Earth, Ocean, and EnvironmentUniversity of South CarolinaColumbiaUSA
  5. 5.Department of Environmental Science and PolicyUniversity of California DavisDavisUSA
  6. 6.Department of Evolution and EcologyUniversity of California DavisDavisUSA

Personalised recommendations