Response and Recovery of Low-Salinity Marsh Plant Communities to Presses and Pulses of Elevated Salinity

Abstract

In estuaries, future variation in sea level and river discharge will lead to saline intrusion into low-salinity tidal marshes. To investigate the processes that control the differential response and recovery of tidal freshwater marsh plant communities to saline pulses, a 3 × 5 factorial greenhouse experiment was conducted to examine the effects of a range of salinity levels (3, 5, and 10 practical salinity units (PSU)) and pulse durations (5, 10, 15, 20, and 30 days per month) on community composition of tidal freshwater marsh vegetation. Recovery of perturbed communities was also examined after 10 months. The results showed that community composition was increasingly affected by the more-saline and longer-duration treatments. The increasing suppression of salt-sensitive species resulted in species reordering, decreased species richness, and decreased aboveground biomass. Most of the plant species were able to recover from low-salinity, short-duration saline pulses in less than 1 year. However, because not all species recovered in the heavily salinized treatments, species richness at the end of the recovery period remained low for treatments that were heavily salinized during the treatment period. In contrast, plant aboveground biomass fully recovered in the heavily salinized treatments. Although the magnitude and duration of pulsed environmental changes had strong effects on community composition, shifts in community composition prevented long-term reductions in productivity. Thus, in this study system, environmental change affected species composition more strongly than it did ecosystem processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ardón, M., J.L. Morse, B.P. Colman, and E.S. Bernhardt. 2013. Drought-induced saltwater incursion leads to increased wetland nitrogen export. Global Change Biology 19 (10): 2976–2985.

    Article  Google Scholar 

  2. Barendregt, A., and C. Swarth. 2013. Tidal freshwater wetlands: variation and changes. Estuaries and Coasts 36 (3): 445–456.

    Article  CAS  Google Scholar 

  3. Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, M. Aubinet, N. Buchmann, C. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A.D. Friend, P. Friedlingstein, T. Grunwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J.M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J.F. Soussana, M.J. Sanz, E.D. Schulze, T. Vesala, and R. Valentini. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437 (7058): 529–533.

    Article  CAS  Google Scholar 

  4. Cloern, J.E., and A.D. Jassby. 2012. Drivers of change in estuarine-coastal ecosystems: discoveries from four decades of study in San Francisco Bay. Reviews of Geophysics 50, 4.

  5. Collins, S.L., K.N. Suding, E.E. Cleland, M. Batty, S.C. Pennings, K.L. Gross, J.B. Grace, L. Gough, J.E. Fargione, and C.M. Clark. 2008. Rank clocks and plant community dynamics. Ecology 89 (12): 3534–3541.

    Article  Google Scholar 

  6. Costanza, R., R. d'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O'Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1998. The value of the world's ecosystem services and natural capital. Ecological Economics 25 (1): 3–15.

    Article  Google Scholar 

  7. Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo, and M. Machmuller. 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7 (2): 73–78.

    Article  Google Scholar 

  8. Crain, C.M., L.K. Albertson, and M.D. Bertness. 2008. Secondary succession dynamics in estuarine marshes across landscape-scale salinity gradients. Ecology 89 (10): 2889–2899.

    Article  Google Scholar 

  9. Crain, C. M., B. R. Silliman, S. L. Bertness, and M. D. Bertness. 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85:2539-2549.

  10. Dieleman, C.M., B.A. Branfireun, J.W. McLaughlin, and Z. Lindo. 2015. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Global Change Biology 21 (1): 388–395.

    Article  Google Scholar 

  11. Dijk, G.V., A.J.P. Smolders, R. Loeb, A. Bout, J.G.M. Roelofs, and L.P.M. Lamers. 2015. Salinization of coastal freshwater wetlands; effects of constant versus fluctuating salinity on sediment biogeochemistry. Biogeochemistry 126 (1–2): 71–84.

    Article  CAS  Google Scholar 

  12. Donohue, I., H. Hillebrand, J.M. Montoya, O.L. Petchey, S.L. Pimm, M.S. Fowler, K. Healy, A.L. Jackson, M. Lurgi, D. McClean, N.E. O'Connor, E.J. O'Gorman, and Q. Yang. 2016. Navigating the complexity of ecological stability. Ecology Letters 19 (9): 1172–1185.

    Article  Google Scholar 

  13. Flynn, K.M., K.L. McKee, and I.A. Mendelssohn. 1995. Recovery of freshwater marsh vegetation after a saltwater intrusion event. Oecologia 103 (1): 63–72.

    Article  CAS  Google Scholar 

  14. Goodman, A.M., G.G. Ganf, G.C. Dandy, H.R. Maier, and M.S. Gibbs. 2010. The response of freshwater plants to salinity pulses. Aquatic Botany 93 (2): 59–67.

    Article  CAS  Google Scholar 

  15. Guo, H., and S.C. Pennings. 2012. Mechanisms mediating plant distributions across estuarine landscapes in a low-latitude tidal estuary. Ecology 93 (1): 90–100.

    Article  Google Scholar 

  16. Guo, H., K. Więski, Z. Lan, and S.C. Pennings. 2014. Relative influence of deterministic processes on structuring marsh plant communities varies across an abiotic gradient. Oikos 123 (2): 173–178.

    Article  Google Scholar 

  17. Herbert, E.R., P. Boon, A.J. Burgin, S.C. Neubauer, R.B. Franklin, M. Ardón, K.N. Hopfensperger, L.P.M. Lamers, and P. Gell. 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: 1–43.

    Article  Google Scholar 

  18. Herbert, E. R., J. Schubauer-Berigan., and C. B. Craft. 2018. Differential effects of chronic and acute simulated seawater intrusion on tidal freshwater marsh carbon cycling. Biogeochemistry, 1–18.

  19. Hooper, D.U., and P.M. Vitousek. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277 (5330): 1302–1305.

    Article  CAS  Google Scholar 

  20. Hoover, D.L., A.K. Knapp, and M.D. Smith. 2014. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95 (9): 2646–2656.

    Article  Google Scholar 

  21. Hopfensperger, K., A. Burgin, V. Schoepfer, and A. Helton. 2014. Impacts of saltwater incursion on plant communities, anaerobic microbial metabolism, and resulting relationships in a restored freshwater wetland. Ecosystems 17 (5): 792–807.

    Article  CAS  Google Scholar 

  22. Howard, R.J., and I.A. Mendelssohn. 1999a. Salinity as a constraint on growth of oligohaline marsh macrophytes. I. Species variation in stress tolerance. American Journal of Botany 86 (6): 785–794.

    Article  CAS  Google Scholar 

  23. Howard, R.J., and I.A. Mendelssohn. 1999b. Salinity as a constraint on growth of oligohaline marsh macrophytes. II. Salt pulses and recovery potential. American Journal of Botany 86 (6): 795–806.

    Article  CAS  Google Scholar 

  24. Howard, R.J., and I.A. Mendelssohn. 2000. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses. Aquatic Botany 68 (2): 143–164.

    Article  Google Scholar 

  25. Knighton, A.D., K. Mills, and C.D. Woodroffe. 1991. Tidal-creek extension and saltwater intrusion in northern Australia. Geology 19 (8): 831–834.

    Article  Google Scholar 

  26. Li, F. 2017. Mesocosm experiment on fresh marsh plant community responses to salinity pulses in 2014 and 2015. Georgia Coastal Ecosystems LTER Project; University of Georgia; Long Term Ecological Research Network. doi:https://doi.org/10.6073/pasta/c48f9dffc45b8595378eb45382dbc2e3.

  27. Li, F., and S. Pennings. 2018. Responses of tidal freshwater and brackish marsh macrophytes to pulses of saline water simulating sea level rise and reduced discharge. Wetlands: 1–7.

  28. Li, S., C.S. Hopkinson, J.P. Schubauer-Berigan, and S.C. Pennings. 2018. Climate drivers of Zizaniopsis miliacea biomass in a Georgia, U.S.A. tidal fresh marsh. Limnology and Oceanograpy 63 (5): 2266–2276. https://doi.org/10.1002/lno.10937.

    Article  Google Scholar 

  29. Ma, G., V.H. Rudolf, and C.S. Ma. 2015. Extreme temperature events alter demographic rates, relative fitness, and community structure. Global Change Biology 21 (5): 1794–1808.

    Article  Google Scholar 

  30. Neubauer, S. 2013. Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries and Coasts 36 (3): 491–507.

    Article  CAS  Google Scholar 

  31. Odum, W.E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19 (1): 147–176.

    Article  Google Scholar 

  32. Pezeshki, S.R., R.D. De Laune, and W.H. Patrick. 1987. Response of the freshwater marsh species, Panicum hemitomon Schult., to increased salinity. Freshwater Biology 17 (2): 195–200.

    Article  Google Scholar 

  33. Rejmánková, E.K. 1992. Ecology of creeping macrophytes with special reference to Ludwigia peploides (H.B.K.) Raven. Aquatic Botany 43 (3): 283–299.

    Article  Google Scholar 

  34. Saintilan, N., N.C. Wilson, K. Rogers, A. Rajkaran, and K.W. Krauss. 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20 (1): 147–157.

    Article  Google Scholar 

  35. Sharpe, P.J., and A.H. Baldwin. 2012. Tidal marsh plant community response to sea-level rise: a mesocosm study. Aquatic Botany 101: 34–40.

    Article  Google Scholar 

  36. Sklar, F.H., and J.A. Browder. 1998. Coastal environmental impacts brought about by alterations to freshwater flow in the Gulf of Mexico. Environmental Management 22 (4): 547–562.

    Article  CAS  Google Scholar 

  37. Smith, M.D. 2011. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology 99 (3): 656–663.

    Article  Google Scholar 

  38. Smith, M.D., A.K. Knapp, and S.L. Collins. 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90 (12): 3279–3289.

    Article  Google Scholar 

  39. Spaak, J.W., J.M. Baert, D.J. Baird, N. Eisenhauer, L. Maltby, F. Pomati, V. Radchuk, J.R. Rohr, P.J. Van den Brink, and F. De Laender. 2017. Shifts of community composition and population density substantially affect ecosystem function despite invariant richness. Ecology Letters 20 (10): 1315–1324.

    Article  Google Scholar 

  40. Sutter, L.A., R.M. Chambers, and J.E. Perry. 2015. Seawater intrusion mediates species transition in low salinity, tidal marsh vegetation. Aquatic Botany 122: 32–39.

    Article  CAS  Google Scholar 

  41. Taguchi, Y.H., and Y. Oono. 2005. Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21 (6): 730–740.

    Article  CAS  Google Scholar 

  42. Thibault, K.M., and J.H. Brown. 2008. Impact of an extreme climatic event on community assembly. Proceedings of the National Academy of Sciences 105 (9): 3410–3415.

    Article  Google Scholar 

  43. Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie, and E. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277 (5330): 1300–1302.

    Article  CAS  Google Scholar 

  44. Visser, J., C. Sasser, R. Chabreck, and R.G. Linscombe. 2002. The impact of a severe drought on the vegetation of a subtropical estuary. Estuaries 25 (6): 1184–1195.

    Article  Google Scholar 

  45. Weston, N.B., R.E. Dixon, and S.B. Joye. 2006. Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization. Journal of Geophysical Research: Biogeosciences 111 (G1): G01009.

    Article  CAS  Google Scholar 

  46. White, S., and M. Alber. 2009. Drought-associated shifts in Spartina alterniflora and S. cynosuroides in the Altamaha River estuary. Wetlands 29 (1): 215–224.

    Article  Google Scholar 

  47. Więski, K., H. Guo, C. Craft, and S. Pennings. 2010. Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia coast. Estuaries and Coasts 33 (1): 161–169.

    Article  CAS  Google Scholar 

  48. Winder, M., and D.E. Schindler. 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85 (8): 2100–2106.

    Article  Google Scholar 

  49. Woo, I., and J.Y. Takekawa. 2012. Will inundation and salinity levels associated with projected sea level rise reduce the survival, growth, and reproductive capacity of Sarcocornia pacifica (pickleweed)? Aquatic Botany 102: 8–14.

    Article  Google Scholar 

  50. Wood, C., and G.A. Harrington. 2015. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland. Groundwater 53 (1): 90–98.

    Article  CAS  Google Scholar 

  51. Zedler, J.B., and S. Kercher. 2005. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30 (1): 39–74.

    Article  Google Scholar 

  52. Zhou, M., K. Butterbach-Bahl, H. Vereecken, and N. Brüggemann. 2016. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Global Change Biology 23: 1338–1352.

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation through the Georgia Coastal Ecosystems Long-Term Ecological Research program under Grant No. OCE-1237140 and a Sigma Xi Grant-in-Aid-of-Research. We thank Wei-Ting Lin, Shanze Li, Jacob Shalack, Caroline Reddy, Dontrece Smith, Timothy Montgomery, Sasha Greenspan, Eric Weingarten, Narissa Turner, Jonathan Adams, and GCE-LTER Schoolyard participants for help with this project. This is contribution number 1074 from the University of Georgia Marine Institute.

Author information

Affiliations

Authors

Contributions

FL and SCP conceived and designed the experiments. FL performed the experiments and analyzed the data. FL and SCP wrote the manuscript.

Corresponding author

Correspondence to Fan Li.

Additional information

Communicated by Carles Ibanez Marti

Electronic supplementary material

ESM 1

(DOCX 148 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, F., Pennings, S.C. Response and Recovery of Low-Salinity Marsh Plant Communities to Presses and Pulses of Elevated Salinity. Estuaries and Coasts 42, 708–718 (2019). https://doi.org/10.1007/s12237-018-00490-1

Download citation

Keywords

  • Disturbance
  • Salinization
  • Freshwater marsh
  • Composition
  • Productivity