Skip to main content

Advertisement

Log in

Wind-Induced Hydrodynamic Interactions With Aquatic Vegetation in a Fetch-Limited Setting: Implications for Coastal Sedimentation and Protection

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Interactions between a patchy degraded Zostera noltei seagrass meadow and waves, currents, and sedimentary processes were analyzed from data obtained from a strongly wind-influenced micro-tidal brackish water lagoon in southeastern France. Measurements were conducted on offshore and foreshore morphology (topography, bathymetry), on hydrodynamics (waves, water levels, and currents) under different wind conditions within and outside the meadow, and on meadow biometry (shoot density, leaf length). The main impact of this patchy meadow on wind-wave transformations seems to be attenuation of waves further offshore than in the absence of vegetation. This attenuation is particularly notable above the meadow front edge, and is related to wave heights, water levels, and wave periods that are, in turn, dependent on wind intensity and fetch length. The data show that the patchy meadow does not attenuate small and short waves, especially when water levels are high, but is capable, like salt marshes and artificial seagrass, of attenuating relatively high and long waves. Notwithstanding its patchy and degraded character, the meadow also strongly influences the vertical distribution of currents. Whereas currents are strong and significantly influenced by wind and wind waves above the meadow, both waves and currents are dissipated in a transitional canopy-water layer. These wave and current modifications are reflected in the evolution of the seabed. Erosion and sedimentation are mainly controlled by the hydrodynamics but the seasonal state of the meadow plays a role by modulating the hydrodynamics. These substrate changes are, important, in turn, in influencing protection of the shoreline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgements

We thank the reviewers and the Associate Editor for their constructive comments and suggestions which have been helpful in improving the manuscript. GIPREB staff (Guillaume Bernard, Nicolas Mayot, Florian Dandine, Vincent Faure) are thanked for the meadow mapping, field assistance, and tide data. Météo France provided the wind data. GLADYS, the French coastal research group, provided some of the instruments deployed in the course of the study. Members of GLADYS (especially Damien Sous), Doriane Delanghe and Thomas Stieglitz, are thanked for the useful discussions.

Funding

A.E. Paquier was provided PhD funding by the “Provence Alpes Côte d’Azur” Region, the European Union, GIPREB (Gestion intégrée, prospective, restauration Etang de Berre), and support from OSU-Institut Pythéas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Eleonore Paquier.

Additional information

Communicated by David K. Ralston

Electronic supplementary material

(MP4 113 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paquier, AE., Meulé, S., Anthony, E.J. et al. Wind-Induced Hydrodynamic Interactions With Aquatic Vegetation in a Fetch-Limited Setting: Implications for Coastal Sedimentation and Protection. Estuaries and Coasts 42, 688–707 (2019). https://doi.org/10.1007/s12237-018-00487-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-00487-w

Keywords

Navigation