Abstract
Seagrasses are sensitive to local environmental conditions such as salinity, the underwater light environment, and nutrient availability. To characterize seagrass coverage and condition, as well as to relate changes in community structure to local environmental and hydrologic conditions, we monitored seagrass communities in the Upper Laguna Madre (ULM), Texas annually from 2011 to 2015. In 2011 and 2012, the lagoon was dominated primarily by Halodule wrightii, with mixed meadows of H. wrightii and Syringodium filiforme located in the northwest of our study area. By 2013, the expansive S. filiforme meadows had disappeared and the species was restricted to the northernmost reaches of the lagoon. The S. filiforme mortality occurred following an extended period of extremely high salinity (salinities 50–70) during a regional drought. Continuous measurements of underwater photosynthetically active radiation and stable carbon isotopic signatures of seagrass blade tissues did not suggest light limitation, and H. wrightii N/P molar ratios near 30:1 were not indicative of nutrient limitation. Based on the absence of strong evidence for light or nutrient limitation, along with the known tolerance of H. wrightii for higher salinities, we conclude that hypersalinity driven by regional drought was likely the major driver behind the observed S. filiforme mortality. With a substantial portion of the global seagrass distribution threatened by drought in the next 50 years, the increased frequency of hypersaline conditions is likely to exacerbate stress in seagrass systems already vulnerable to the effects of rising water temperatures, eutrophication, and sea level rise.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Atkinson, M.J., and S.V. Smith. 1983. C:N:P ratios of benthic marine plants. Limnology and Oceanography 28 (3): 568–574.
Ball, D., M. Soto-Berelov, and P. Young. 2014. Historical seagrass mapping in Port Phillip Bay, Australia. Journal of Coastal Conservation 18: 257–282.
Borum, J., O. Pedersen, T.M. Greve, T.A. Frankovich, J.C. Zieman, J.W. Fourqurean, and C.J. Madden. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93 (1): 148–158.
Burkholder, J.M., D.A. Tomasko, and B.W. Touchette. 2007. Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology 350: 46–72.
Cambridge, M.L., M.W. Fraser, M. Holmer, J. Kuo, and G.A. Kendrick. 2012. Hydrogen sulfide intrusion in seagrasses from Shark Bay, Western Australia. Marine and Freshwater Research 63: 1027–1038.
Campbell, J.E., and J.W. Fourqurean. 2009. Interspecific variation in the elemental and stable isotope content of seagrasses in South Florida. Marine Ecology Progress Series 387: 109–123.
Cayan, D., T. Das, D. Pierce, T. Barnett, M. Tyree, and A. Gershunov. 2010. Future dryness in the southwest United States and the hydrology of the early 21st century drought. Proceedings of the National Academy of Sciences 107: 21271–21276.
Chapman, H.D., and P.F. Pratt. 1961. Methods of analysis for soils, plants and waters. Riverside: University of California.
Collier, C.J., and M. Waycott. 2014. Temperature extremes reduce seagrass growth and induce mortality. Marine Pollution Bulletin 83 (2): 483–490.
Cullen-Unsworth, L., and R. Unsworth. 2013. Seagrass meadows, ecosystem services, and sustainability. Environment: Science and Policy for Sustainable Development 55 (3): 14–28.
deFouw, J., L.L. Govers, J. van de Koppel, J. van Belzen, W. Dorigo, M.A. Sidi Cheikh, M.J.A. Christianen, K.J. van der Reijden, M. van der Geest, T. Piersma, A.J.P. Smolders, H. Olff, L.P.M. Lamers, J.A. van Gils, and T. van der Heide. 2016. Drought, mutualism breakdown, and landscape-scale degradation of seagrass beds. Current Biology 26: 1051–1056.
Duarte, C.M. 1990. Seagrass nutrient content. Marine Ecology Progress Series 67: 201–207.
Dunton, K., W. Pulich, and T. Mutchler. 2011. A seagrass monitoring program for Texas coastal waters: Multiscale integration of landscape features with plant and water quality indicators. Final Report to Coastal Bend Bays & Estuaries Program, 39 pp. Corpus Christi.
Dunton, K.H. 1994. Seasonal growth and biomass of the subtropical seagrass Halodule wrightii in relation to continuous measurements of underwater irradiance. Marine Biology 120: 479–489.
Fernández-Torquemada, Y., and J.L. Sánchez-Lizaso. 2011. Responses of two Mediterranean seagrasses to experimental changes in salinity. Hydrobiologia 669: 21–33.
Ferreira, C., C. Simioni, E.C. Schmidt, F. Ramlov, M. Maraschin, and Z.L. Bouzon. 2017. The influence of salinity on growth, morphology, leaf ultrastructure, and cell viability of the seagrass Halodule wrightii Ascherson. Protoplasma 254: 1529–1537.
Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen, K.J. McGlathery, and O. Serrano. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505–509.
Fourqurean, J.W., and L.M. Rutten. 2003. Competing goals of spatial and temporal resolution: Monitoring seagrass communities on a regional scale. In Monitoring Ecosystems, ed. D.E. Busch and J.C. Trexler, 257–288. Washington D.C.: Island Press.
Fourqurean, J.W., and J.C. Zieman. 2002. Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry 61: 229–245.
Gallegos, M.E., M. Merino, A. Rodriguez, N. Marbà, and C.M. Duarte. 1994. Growth patterns and demography of pioneer Caribbean seagrasses Halodule wrightii and Syringodium filiforme. Marine Ecology Progress Series 109: 99–104.
Green, E.P., and F.T. Short. 2003. World Atlas of Seagrasses. Riverside: University of California.
Grice, A.M., N.R. Loneragan, and W.C. Dennsion. 1996. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass. Journal of Experimental Marine Biology and Ecology 195: 91–110.
Griffin, N.E., and M.J. Durako. 2012. The effect of pulsed versus gradual salinity reduction on the physiology and survival of Halophila johnsonii Eiseman. Marine Biology 159: 1439–1447.
Hall, M.O., B.T. Furman, M. Merello, and M.J. Durako. 2016. Recurrence of Thalassia testudinum seagrass die-off in Florida Bay, USA: initial observations. Marine Ecology Progress Series 560: 243–249.
Heck, K.L., Jr., T.J.B. Carruthers, C.M. Duarte, A.R. Hughes, G.A. Kendrick, R.J. Orth, and S.W. Williams. 2008. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11: 1198–1210.
Hemminga, M.A., and M.A. Mateo. 1996. Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Marine Ecology Progress Series 140: 285–298.
Hernandez, E.A., and V. Uddameri. 2014. Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas. Environmental Earth Sciences 71: 2491–2501.
Hirst, A.J., and G.P. Jenkins. 2017. Experimental test of N-limitation for Zostera nigricaulis seagrass at three sites reliant upon very different sources of N. Journal of Experimental Marine Biology and Ecology 486: 204–213.
Hirst, A.J., A.R. Longmore, D. Ball, P.L.M. Cook, and G.P. Jenkins. 2016. Linking nitrogen sources utilised by seagrass in a temperate marine embayment to patterns of seagrass change during drought. Marine Ecology Progress Series 549: 79–88.
Holmer, M., O. Pedersen, D. Krause-Jensen, B. Olesen, M. Hedegård Petersen, S. Schopmeyer, M. Koch, B.A. Lomstein, and H.S. Jensen. 2009. Sulfide intrusion in the tropical seagrasses Thalassia testudinum and Syringodium filiforme. Estuarine, Coastal and Shelf Science 85: 319–326.
Hu, X., D.J. Burdige, and R.C. Zimmerman. 2012. δ13C is a signature of light availability and photosynthesis in seagrass. Limnology and Oceanography 57 (2): 441–448.
IPCC. 2014. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, RK and LA Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
IPCC, 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Kenworthy, J.W., and M.S. Fonseca. 1996. Light requirements of seagrasses Halodule wrightii and Syringodium filiforme derived from the relationship between diffuse light attenuation and maximum depth distribution. Estuaries 19 (3): 740–750.
Koch, M.S., and J.M. Erskine. 2001. Sulfide as a phytotoxin to the tropical seagrass Thalassia testudinum: interactions with light, salinity and temperature. Journal of Experimental Marine Biology and Ecology 266: 81–95.
Koch, M.S., S.A. Schopmeyer, M. Holmer, C.J. Madden, and C. Kyhn-Hansen. 2007a. Thalassia testudinum response to the interactive stressors hypersalinity, sulfide and hypoxia. Aquatic Botany 87 (2): 104–110.
Koch, M.S., S.A. Schopmeyer, C. Kyhn-Hansen, C.J. Madden, and J.S. Peters. 2007b. Tropical seagrass species tolerance to hypersalinity stress. Aquatic Botany 86: 14–24.
Koch, M.S., S.A. Schopmeyer, O.I. Nielsen, C. Kyhn-Hansen, and C.J. Madden. 2007c. Conceptual model of seagrass die-off in Florida Bay: Links to biogeochemical processes. Journal of Experimental Marine Biology and Ecology 350 (1–2): 73–88.
Lee, T.N., E. Johns, N. Melo, R.H. Smith, P. Ortner, and D. Smith. 2006. On Florida Bay hypersalinity and water exchange. Bulletin of Marine Science 79 (2): 301–327.
Lirman, D., and W.P. Cropper Jr. 2003. The influence of salinity on seagrass growth, survivorship, and distribution within Biscayne Bay, Florida: Field, experimental and modeling studies. Estuaries 26 (1): 131–141.
Manuel, S.A., K.A. Coates, W.J. Kenworthy, and J.W. Fourqurean. 2013. Tropical species at the northern limit of their range: Composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Marine Environmental Research 89: 63–75.
Marbà, N., M. Holmer, E. Gacia, and C. Barrón. 2007. Seagrass beds and coastal biogeochemistry. In Seagrasses: Biology, Ecology and Conservation, ed. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 135–157. Dordrecht: Springer.
Martin, S.R., C.P. Onuf, and K.H. Dunton. 2008. Assessment of propeller and off-road vehicle scarring in seagrass beds and wind-tidal flats of the southwestern Gulf of Mexico. Botanica Marina 51: 79–91.
McMahan, C.A. 1968. Biomass and salinity tolerance of shoalgrass and manateegrass in Lower Laguna Madre, Texas. The Journal of Wildlife Management 32 (3): 501–506.
McMahan, C.A. 1970. Food habits of ducks wintering on Laguna Madre, Texas. The Journal of Wildlife Management 34 (4): 946–949.
McMillan, C., and F.N. Moseley. 1967. Salinity tolerances of five marine spermatophytes of Redfish Bay, Texas. Ecology 48 (3): 503–506.
McMillan, C. 1981. Seed reserves and seed germination for two seagrasses, Halodule wrightii and Syringodium filiforme, from the Western Atlantic. Aquatic Botany 11: 279–296.
Merkord, GW. 1978. The distribution and abundance of seagrasses in Laguna Madre of Texas. M.S. Thesis, Texas A&I University, Kingsville, Texas, USA.
Mitchell, C.A., T.W. Custer, and P.J. Zwank. 1994. Herbivory on shoalgrass by wintering redheads in Texas. The Journal of Wildlife Management 58: 131–141.
Montagna, P.A., T.A. Palmer, and J. Beseres Pollack. 2013. Hydrological changes and estuarine dynamics, 94 pp. New York: SpringerBriefs in Environmental Sciences. https://doi.org/10.1007/978-1-4614-5833-3.
Neckles, H.A., B.S. Kopp, B.J. Peterson, and P.S. Pooler. 2012. Integrating scales of seagrass monitoring to meet conservation needs. Estuaries and Coasts 35: 23–46.
Onuf, C.P. 1994. Seagrasses, dredging and light in Laguna Madre, Texas, USA. Estuarine, Coastal and Shelf Science 39: 75–91.
Onuf, CP. 2007. Laguna Madre. In: Handley, L, D Altsman and R DeMay (eds.). Seagrass status and trends in the northern Gulf of Mexico: 1940–2002. U.S. Geological Survey Scientific Investigations Report 2006–5287 and US Environmental Protection Agency 855-R-04-003. 29 pp.
Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworth, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. Bioscience 56 (12): 987–996.
Palmer, T.A., and P.A. Montagna. 2015. Impacts of droughts and low flows on estuarine water quality and benthic fauna. Hydrobiologia 753: 111–129. https://doi.org/10.1007/s10750-015-2200-x.
Quammen, M.L., and C.P. Onuf. 1993. Laguna Madre: Seagrass changes continue decades after salinity reduction. Estuaries 16 (2): 302–310.
Romero-Lankao, P, JB Smith, DJ Davidson, NS Diffenbaugh, PL Kinney, P Kirshen, P Kovacs and L Villers Ruiz. (2014). North America. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Barros, VR, CB Field, DJ Dokken, MD Mastrandrea, KJ Mach, TE Billir, M Chatterjee, KL Ebi, YO Estrada, RC Genova, R Girma, ES Kissel, AN Levy, S MacCracken, PR Mastrandrea and LL White (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1439–1498 pp.
Rooker, J.R., and S.A. Holt. 1997. Utilization of subtropical seagrass meadows by newly settled red drum Sciaenops ocellatus: patterns of distribution and growth. Marine Ecology Progress Series 158: 139–149.
Ruíz, J.M., L. Marín-Guirao, and J.M. Sandoval-Gil. 2009. Responses of the Mediterranean seagrass Posidonia oceanica to in situ simulated salinity increase. Botanica Marina 52: 459–470.
Schoenbaechler, C and CG Guthrie. 2011. Coastal hydrology for the Laguna Madre estuary, with emphasis on the Lower Laguna Madre. Report by Texas Water Development Board Bays & Estuaries Program. 29 pp.
Shepard, D. 1968. A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM National Conference. https://doi.org/10.1145/800186.810616.
Short, F.T., and H.A. Neckles. 1999. The effects of global climate change on seagrasses. Aquatic Botany 63: 169–196.
Short, F.T., B. Polidoro, S.R. Livingstone, K.E. Carpenter, S. Bandeira, J. Sidik Bujang, H.P. Calumpong, T.J.B. Carruthers, R.G. Coles, W.C. Dennison, P.L.A. Erftemeijer, M.D. Fortes, A.S. Freeman, T.F. Jagtap, A.H.M. Kamal, G.A. Kendrick, W.J. Kenworthy, Y.A. La Nafie, I.M. Nasution, R.J. Orth, A. Prathep, J.C. Sanciangco, B. van Tussenbroek, S.G. Vergara, M. Waycott, and J.C. Zieman. 2011. Extinction risk assessment of the world’s seagrass species. Biological Conservation 144 (7): 1961–1971.
Short, F.T., and S. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses. Environmental Conservation 23 (1): 17–27.
Solis, R.S., and G.L. Powell. 1999. Hydrography, mixing characteristics, and residence times of Gulf of Mexico estuaries. In Biogeochemistry of Gulf of Mexico Estuaries, ed. T.S. Bianchi, J.R. Pennock, and R.Y. Twilley, 29–62. New York: John Wiley & Sons, Inc.
Tolan, J.M., S.A. Holt, and C.P. Onuf. 1997. Distribution and community structure of ichthyoplankton in Laguna Madre seagrass meadows: Potential impacts of seagrass species change. Estuaries 20: 450–464.
Touchette, B.W. 2007. Seagrass-salinity interactions: Physiological mechanisms used by submersed marine angiosperms for a life at sea. Journal of Experimental Marine Biology and Ecology 350: 194–215.
Tunnell, J.W., Jr., and F.W. Judd. 2002. The Laguna Madre of Texas and Tamaulipas. College Station: Texas A&M University Press.
Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106 (30): 12377–12381.
Zieman, J.C., J.W. Fourqurean, and T.A. Frankovich. 1999. Seagrass die-off in Florida Bay: Long-term trends in abundance and growth of turtle grass, Thalassia testudinum. Estuaries 22 (2): 460–470.
Acknowledgements
We thank K. Jackson, K. Darnell, V. Congdon, and many others for assistance with the Texas Seagrass Statewide Monitoring Program. We are appreciative to J. Meiman for field assistance within Padre Island National Seashore (PINS) and for providing salinity data from Bird Island and Baffin Bay. We thank J. Tunnell for field assistance in ULM and continued support of our monitoring efforts. We thank T. Whiteaker and S. Schonberg for assistance with GIS mapping.
Funding
Funding for ULM seagrass monitoring was provided by the Coastal Bend Bays & Estuaries Program (#1201 and 1336), and monitoring within PINS was funded by the National Park Service (#P11AT51021). This is contribution #68 of the Marine Education and Research Center in the Institute for Water and Environment at Florida International University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Stijn Temmerman
Rights and permissions
About this article
Cite this article
Wilson, S.S., Dunton, K.H. Hypersalinity During Regional Drought Drives Mass Mortality of the Seagrass Syringodium filiforme in a Subtropical Lagoon. Estuaries and Coasts 41, 855–865 (2018). https://doi.org/10.1007/s12237-017-0319-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12237-017-0319-x