Estuaries and Coasts

, Volume 41, Issue 3, pp 772–783 | Cite as

Tidal Stage Changes in Structure and Diversity of Intertidal Benthic Diatom Assemblages: a Case Study from Two Contrasting Charleston Harbor Flats

  • Luis G. Rivera-Garcia
  • Kristina M. Hill-Spanik
  • Sean T. Berthrong
  • Craig J. PlanteEmail author


Benthic microalgae are key contributors to near-shore food webs and sediment stabilization. Temporal variability in microalgal biomass and production throughout the tidal cycle has been well documented; however, due to limitations of traditional methods of analysis patterns of community composition and diversity over such time scales have not been revealed. To explore the latter and better understand how short-term changes throughout the tidal cycle may affect community functioning, we compared benthic diatom composition and diversity over tidal stage shifts. We employed two disparate molecular techniques (denaturing gel gradient electrophoresis with Sanger DNA sequencing of excised bands and high-throughput community metagenome sequencing) to characterize diatom assemblages in representative muddy and sandy intertidal sites in Charleston Harbor, SC, USA. In support of prior studies, we found higher diatom diversity in sandbar as compared to mudflat sediments. Spatial differences were stronger relative to tidal temporal differences, although diversity metrics generally were highest after prolonged tidal immersion as compared to low-tide emersion or just after immersion at flood tide. Composition of the diatom assemblage differed markedly between sites, with species in genera Halamphora, Amphora, and Navicula dominating the sandbar, whereas Cyclotella, Skeletonema, and Thalassiosira were the most prevalent genera on the mudflat. Diatom composition differed by tidal stage, with assemblages during low-tide exposure distinct from samples taken after immersion. Both sandbar and mudflat sediments exhibited increases in relative proportion of epipelic diatoms and decreases in planktonic taxa during low-tide exposure. Our findings of short-term changes in species composition and dominance could inform primary productivity models to better estimate understudied diatom contributions in heterogeneous and highly variable tidal systems.


Benthic microalgae Diatom Sediment Resuspension South Carolina High-throughput sequencing 



We thank the directors of the Fort Johnson Summer REU Program, Drs. Louis and Karen Burnett. Also, we thank Patricia Roth for her experimental thoroughness and advice. This report is based upon work supported by the US National Science Foundation under grant DBI-1062990. This is contribution no. 494 of the Grice Marine Laboratory.


  1. Aguilera, A., F. Gómez, E. Lospitao, and R. Amils. 2006. A molecular approach to the characterization of the eukaryotic communities of an extreme acidic environment: methods for DNA extraction and denaturing gradient gel electrophoresis analysis. Systematic and Applied Microbiology 29: 593–605.CrossRefGoogle Scholar
  2. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic Local Alignment Search Tool. Journal of Molecular Biology 215: 403–410.CrossRefGoogle Scholar
  3. Asmus, R. 1982. Field measurements on seasonal variation of the activity of primary producers on a sandy tidal flat in the northern Wadden Sea. Netherlands Journal of Sea Research 16: 389–402.CrossRefGoogle Scholar
  4. Brockmann, C. 1950. Die Watt-Diatomeen de schleswig-holsteinischen Westküste. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 487: 1–26.Google Scholar
  5. Brotas, V., M.T. Cabrita, A. Portugal, J. Serôdio, and F. Catarino. 1995. Spatio-temporal distribution of the microphytobenthic biomass in intertidal flats of Tagus Estuary (Portugal). Hydrobiologia 300 (301): 93–104.CrossRefGoogle Scholar
  6. Brotas, V., N. Risgaard-Petersen, J. Serôdio, L. Ottosen, T. Dalsgaard, and L. Ribeiro. 2003. In situ measurements of photosynthetic activity and respiration of intertidal benthic microalgal communities undergoing vertical migration. Ophelia 57: 13–26.CrossRefGoogle Scholar
  7. Caporaso, J.G., J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Pena, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, and R. Knight. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335–336.CrossRefGoogle Scholar
  8. Cary, S.C., B.J. Hicks, N.J. Crawford, and K.A. Coyne. 2006. A sensitive genetic-based detection capability for Didymosphenia geminate. Interim report: CBER contract report. Vol. 45, 68 pp. Hamilton: Centre for Biodiversity and Ecology Research.Google Scholar
  9. Chung, M.H., W.D. Yoon, and J.B. Joon-Baek. 2010. Morphological description of Cyclotella atomus var. Marina (Bacillariophyceae): newly reported in Korean waters. Algae 25: 57–64.CrossRefGoogle Scholar
  10. Clarke, K.R., and R.N. Gorley. 2006. Primer v6: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
  11. Consalvey, M., D.M. Paterson, and G.J. Underwood. 2004. The ups and downs of life in a benthic biofilm: migration of benthic diatoms. Diatom Research: The Journal of the International Society for Diatom Research 19: 181–202.CrossRefGoogle Scholar
  12. Davis, M.W., and C.D. McIntire. 1983. Effects of physical gradients on the production dynamics of sedimentassociated algae. Marine Ecology Progress Series 13: 103–114.CrossRefGoogle Scholar
  13. de Brouwer, J.D., K. Wolfstein, G.K. Ruddy, T.E.R. Jones, and L.J. Stal. 2005. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microbial Ecology 49: 501–512.CrossRefGoogle Scholar
  14. Decho, A.W., and G.R. Lopez. 1993. Exopolymer microenvironments of microbial flora: multiple and interactive effects on trophic relationships. Limnology and Oceanography 38: 1633–1645.CrossRefGoogle Scholar
  15. Decottignies, P., P.G. Beninger, Y. Rincé, J.R. Richard, and R. Pascal. 2007. Exploitation of natural food sources by two sympatric, invasive suspension-feeders: Crassostrea gigas and Crepidula fornicata. Marine Ecology Progress Series 334: 179–192.CrossRefGoogle Scholar
  16. Delgado, M., V.N. de Jonge, and H. Peletier. 1991. Effect of sand movement on the growth of benthic diatoms. Journal of Experimental Marine Biology and Ecology 145: 221–231.CrossRefGoogle Scholar
  17. de Jonge, V.N. 1994. Wind-driven tidal and annual gross transport of mud and microphytobenthos in the Ems estuary, and its importance for the ecosystem. In Changes in fluxes in estuaries, ed. K.R. Dyer and R.J. Orth, 29–40. Fredensborg: Olsen and Olsen.Google Scholar
  18. de Jonge, V.N., and J.E.E. van Beusekom. 1992. Contribution of resuspended microphytobenthos to total phytoplankton in the Ems estuary and its possible role for grazers. Netherlands Journal of Sea Research 30: 91–105.CrossRefGoogle Scholar
  19. Diez, B., C. Pedros-Alio, T.L. Marsh, and R. Massana. 2001. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Applied and Environmental Microbiology 67: 2942–2951.CrossRefGoogle Scholar
  20. Easley, J.T., S. Hymel, and C.J. Plante. 2005. Temporal patterns of benthic microalgal migration on a semiprotected beach. Estuarine, Coastal, Shelf Sci 64: 486–496.CrossRefGoogle Scholar
  21. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.CrossRefGoogle Scholar
  22. Forster, R.M., V. Créach, K. Sabbe, W. Vyverman, and L.J. Stal. 2006. Biodiversity–ecosystem function relationship in microphytobenthic diatoms of the Westerschelde estuary. Marine Ecology Progress Series 311: 191–201.CrossRefGoogle Scholar
  23. Graf, G. 1992. Benthic-pelagic coupling: a benthic view. Oceanography and Marine Biology: An Annual Review 30: 149–190.Google Scholar
  24. Grippo, M.A., J.W. Fleeger, N.N. Rabalais, R. Condrey, and K.R. Carman. 2010. Contribution of phytoplankton and benthic microalgae to inner shelf sediments of the north-central Gulf of Mexico. Continental Shelf Research 30: 456–466.CrossRefGoogle Scholar
  25. Grippo, M.A., J.W. Fleeger, S.F. Dubois, and R. Condrey. 2011. Spatial variation in basal resources supporting benthic food webs revealed for the inner continental shelf. Limnology and Oceanography 56: 841–856.CrossRefGoogle Scholar
  26. Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Culture of marine invertebrate animals, ed. W.L. Smith and M.H. Chanley, 26–60. Plenum: New York.Google Scholar
  27. Haas, B.J., D. Gevers, A.M. Earl, M. Feldgarden, D.V. Ward, et al. 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research 21: 494–504.CrossRefGoogle Scholar
  28. Hagerthey, S.E., E.C. Defew, and D.M. Paterson. 2002. Influence of Corophium volutator and Hydrobia ulvae on intertidal benthic diatom assemblages under different nutrient and temperature regimes. Marine Ecology Progress Series 245: 47–59.CrossRefGoogle Scholar
  29. Hamady, M., C. Lozupone, and R. Knight. 2009. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. Int Society Microbial Ecology J 4: 17–27.Google Scholar
  30. Hamels, I., K. Sabbe, K. Muylaert, C. Barranguet, C. Lucas, P. Herman, and W. Vyverman. 1998. Organisation of microbenthic communities in intertidal estuarine flats, a case study from the Molenplaat (Westerschelde estuary, the Netherlands). European Journal of Protistology 34: 308–320.CrossRefGoogle Scholar
  31. Hustedt, F. 1939. Die Diatomeenflora des Kustengebietes der Nordsee vom Dollart bis zur Elbmündung. I. Die Diatomeenflora in den Sedimenten der unteren Ems sowie auf den Watten der Leybucht, des Memmert und bei der Insel Juist. Adhandlungen des Naturwissenschaftlichen Verein zu Bremen 31: 571–677.Google Scholar
  32. Jesus, B., V. Brotas, M. Marani, and D.M. Paterson. 2005. Spatial dynamics of microphytobenthos determined by PAM fluorescence. Estuarine, Coastal, Shelf Sci 65: 30–42.CrossRefGoogle Scholar
  33. Kai, A.Y., T. Nakayama Yoshi, and I. Inouye. 2008. Aurearenophyceae classis nova, a new class of Heterokontophyta based on a new marine unicellular alga Aurearena cruciata gen. et sp. nov. inhabiting sandy beaches. Protist 159: 435–457.CrossRefGoogle Scholar
  34. Kermarrec, L., A. Franc, F. Rimet, P. Chaumeil, J.M. Frigerio, J.F. Humbert, and A. Bouchez. 2014. A nextgeneration sequencing approach to river biomonitoring using benthic diatoms. Freshwater Sci 33: 349–363.CrossRefGoogle Scholar
  35. Kunin, V., A. Engelbrektson, H. Ochman, and P. Hugenholtz. 2010. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology 12: 118–123.CrossRefGoogle Scholar
  36. Kwon, B.O., C.H. Koh, J.S. Khim, J. Park, S.G. Kang, and J.H. Hwang. 2014. The relationship between primary production of microphytobenthos and tidal cycle on the Hwaseong mudflat, west coast of Korea. Journal of Coastal Research 30: 1188–1196.CrossRefGoogle Scholar
  37. Lucas, C.H., C. Banham, and P.M. Holligan. 2001. Benthic-pelagic exchange of microalgae at a tidal flat. 2. Taxonomic analysis. Marine Ecology Progress Series 212: 39–52.CrossRefGoogle Scholar
  38. Luddington, I.A., I. Kaczmarska, and C. Lovejoy. 2012. Distance and character-based evaluation of the V4 region of the 18S rRNA gene for the identification of diatoms (Bacillariophyceae). Public Library Sci One 7: E45664. Scholar
  39. MacIntyre, H.L., R.J. Geider, and D.C. Miller. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19: 186–201.CrossRefGoogle Scholar
  40. Madden, T. 2002. The BLAST sequence analysis tool. In The NCBI handbook, ed. J. McEntyre and J. Ostell CH, 16. Bethesda (MD): National Center for Biotechnology Information (US) Available from: .
  41. Malet, N., P.-G. Sauriau, M. Ryckaert, P. Malestroit, and G. Guillou. 2008. Dynamics and sources of suspended particulate organic matter in the Marennes-Oleron oyster farming bay: insights from stable isotopes and microalgae ecology. Estuarine, Coastal, Shelf Sci 78: 576–586.CrossRefGoogle Scholar
  42. Mann, D.G. 2010. Discovering diatom species: is a long history of disagreements about species-level taxonomy now at an end? Plant Ecology Evolution 143: 251–264.CrossRefGoogle Scholar
  43. McLusky, D.S., and M. Elliott. 2004. The estuarine ecosystem: ecology, threats, and management. Oxford: Oxford University Press.CrossRefGoogle Scholar
  44. Meadows, P.S., and J.G. Anderson. 1968. Micro-organisms attached to marine sand grains. Journal of the Marine Biological Association of the United Kingdom 48: 161–175.CrossRefGoogle Scholar
  45. Méléder, V., Y. Rincé, L. Barillé, P. Gaudin, and P. Rosa. 2007. Spatiotemporal changes in microphytobenthos assemblages in a macrotidal flat (Bourgneuf Bay, France). Journal of Phycology 43: 1177–1190.CrossRefGoogle Scholar
  46. Miller, D.C., R.J. Geider, and H.L. MacIntyre. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19: 202–212.CrossRefGoogle Scholar
  47. Mukai, H. 2006. Contribution of benthic and epiphytic diatoms to clam and oyster production in the Akkeshi-ko estuary. Journal of Oceanography 62: 267–281.CrossRefGoogle Scholar
  48. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied Environmental Microbiology 59: 695–700.Google Scholar
  49. Neilson, J.W., F.L. Jordan, and R.M. Maier. 2013. Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis. Journal of Microbiological Methods 92: 256–263.CrossRefGoogle Scholar
  50. Oppenheim, O.R. 1988. The distribution of epipelic diatoms along an intertidal shore in relation to principal physical gradients. Botanica Marina 31: 65–72.CrossRefGoogle Scholar
  51. Paterson, D.M. 1986. The migratory behaviour of diatom assemblages in a laboratory tidal micro-ecosystem examined by low temperature scanning electron microscopy. Diatom Research: The Journal of the International Society for Diatom Research 1: 227–239.CrossRefGoogle Scholar
  52. Paterson, D.M., and S.E. Hagerthey. 2001. Microphytobenthos in contrasting coastal ecosystems: biology and dynamics. In Ecological comparisons of sedimentary shores, ed. K. Reise, 105–125. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  53. Perkins, R.G., K. Oxborough, A.R.M. Hanlon, G.J.C. Underwood, and N.R. Baker. 2002. Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilms? Marine Ecology Progress Series 228: 47–56.CrossRefGoogle Scholar
  54. Pinckney, J.L., and R.G. Zingmark. 1991. Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Marine Ecology Progress Series 76: 81–89.CrossRefGoogle Scholar
  55. Plante, C.J., S. Feipel, and J.L. Wilkie. 2010. Disturbance effects of deposit feeding on microalgal community structure and mechanisms of recolonization. Journal of Phycology 46: 907–916.CrossRefGoogle Scholar
  56. Plante, C.J., V. Fleer, and M.L. Jones. 2016. Neutral processes and species sorting in benthic microalgal community assembly: effects of tidal resuspension. Journal of Phycology 52: 827–839.CrossRefGoogle Scholar
  57. Plante, C.J., E. Frank, and P. Roth. 2011. Interacting effects of deposit feeding and tidal resuspension on benthic microalgal community structure and spatial patterns. Marine Ecology Progress Series 440: 53–65.CrossRefGoogle Scholar
  58. Powell, S.M., M.J. Riddle, I. Snape, and J.S. Stark. 2005. Location and DGGE methodology can influence interpretation of field experimental studies on the response to hydrocarbons by Antarctic benthic microbial community. Antarctic Science 17: 353–360.CrossRefGoogle Scholar
  59. Price, M.N., P.S. Dehal, and A.P. Arkin. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. Public Library Sci One 5: E9490. Scholar
  60. Rastogi, G., and R.K. Sani. 2011. Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In Microbes and microbial technology, ed. I. Ahmad, F. Ahmad, and J. Pichtel, 29–57. New York: Springer.CrossRefGoogle Scholar
  61. Rees, G.N., D.S. Baldwin, G.O. Watson, S. Perryman, and D.L. Nielsen. 2004. Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Antonie Van Leeuwenhoek 86: 339–347.CrossRefGoogle Scholar
  62. Riaux, C. 1982. La chlorophylle a dans un sédiment estuarien de Bretagne Nord. Annales de l’Institut Océanographique 58: 185–203.Google Scholar
  63. Ribeiro, L.L.C.S. 2010. Intertidal benthic diatoms of the Tagus estuary: taxonomic composition and spatial-temporal variation. Ph.D. dissertation. Lisbon: Universidade de Lisboa.Google Scholar
  64. Ribeiro, L., V. Brotas, Y. Rincé, and B. Jesus. 2013. Structure and diversity of intertidal benthic diatom assemblages in contrasting shores: a case study from the Tagus estuary. Journal of Phycology 49: 258–270.CrossRefGoogle Scholar
  65. Rovira, L., R. Trobajo, M. Leira, and C. Ibáñez. 2012. The effects of hydrological dynamics on benthic diatom community structure in a highly stratified estuary: the case of the Ebro estuary (Catalonia, Spain). Estuarine, Coastal and Shelf Science 101: 1–14.CrossRefGoogle Scholar
  66. Round, F.E. 1960. Studies on bottom-living algae in some lakes of the English Lake District: IV. The seasonal cycles of the Bacillariophyceae. Journal of Ecology 48: 529–547.CrossRefGoogle Scholar
  67. Sabbe, K. 1993. Short-term fluctuations in benthic diatom numbers on an intertidal sandflat in the Westerschelde estuary (Zeeland, the Netherlands). Hydrobiologia 269 (270): 275–284.CrossRefGoogle Scholar
  68. Sabbe, K. 1997. Systematics and ecology of intertidal benthic diatoms of the Westerschelde Estuary (the Netherlands). Ph.D. dissertation. Ghent: Universiteit Gent.Google Scholar
  69. Sabbe, K., and W. Vyverman. 1991. Distribution of benthic diatom assemblages in the Westerschelde (Zeeland, the Netherlands). Belgium Journal Botany 124: 91–101.Google Scholar
  70. Sahan, E., K. Sabbe, V. Creach, G. Hernández-Raquet, W. Vyverman, L.J. Stal, and G. Muyzer. 2007. Community structure and seasonal dynamics of diatoms and associated grazers in intertidal mudflats. Aquatic Microbial Ecology 47: 253–266.CrossRefGoogle Scholar
  71. Shimeta, J., C.L. Amos, S.E. Beaulieu, and S.L. Katz. 2003. Resuspension of benthic protists at subtidal coastal sites with differing sediment composition. Marine Ecology Progress Series 259: 103–115.CrossRefGoogle Scholar
  72. Smith, D.J., and G.J.C. Underwood. 2000. The production of extracellular carbohydrates by estuarine benthic diatoms: the effects of growth phase and light and dark treatment. Journal of Phycology 36: 321–333.CrossRefGoogle Scholar
  73. Sogin, M.L., H.G. Morrison, J.A. Huber, D.M. Welch, S.M. Huse, P.R. Neal, J.M. Arrieta, and G.J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings National Academy Sci 103: 12115–12120.CrossRefGoogle Scholar
  74. Sullivan, M.J. 1982. Distribution of edaphic diatoms in a Mississippi salt marsh: a canonical correlation analysis. Journal of Phycology 18: 130–133.CrossRefGoogle Scholar
  75. Thornton, D.C.O., L.F. Dong, G.J.C. Underwood, and D.B. Nedwell. 2002. Factors affecting microphytobenthic biomass, species composition and production in the Colne estuary (UK). Aquatic Microbial Ecology 27: 285–300.CrossRefGoogle Scholar
  76. Underwood, G.J.C. 1994. Seasonal and spatial variation in epipelic diatom assemblages in the Severn estuary. Diatom Research: The Journal of the International Society for Diatom Research 9: 451–472.CrossRefGoogle Scholar
  77. Underwood, G.J.C., and J. Kromkamp. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 29: 93–153.CrossRefGoogle Scholar
  78. Underwood, G.J.C., and D.M. Paterson. 1993. Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn estuary. Journal of the Marine Biological Association of the United Kingdom 73: 871–887.CrossRefGoogle Scholar
  79. Underwood, G.J.C., R.G. Perkins, M.C. Consalvey, A.R.M. Hanlon, K. Oxborough, N.R. Baker, and D.M. Paterson. 2005. Patterns in microphytobenthic primary productivity: species-specific variation in migratory rhythms and photosynthetic efficiency in mixed-species biofilms. Limnology and Oceanography 50: 755–767.CrossRefGoogle Scholar
  80. van Hannen, E.J., M. Veninga, J. Bloem, H.J. Gons, and H.J. Laanbroek. 1999. Genetic changes in the bacterial community structure associated with protistan grazers. Archiv für Hydrobiologie 145: 25–38.CrossRefGoogle Scholar
  81. Vieira, S., L. Ribeiro, J.M. da Silva, and P. Cartaxana. 2013. Effects of short-term changes in sediment temperature on the photosynthesis of two intertidal microphytobenthos communities. Estuarine, Coastal and Shelf Science 119: 112–118.CrossRefGoogle Scholar
  82. Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73: 5261–5267.CrossRefGoogle Scholar
  83. Weckström, K., and S. Juggins. 2006. Coastal diatom-environment relationships from the Gulf of Finland, Baltic Sea. Journal of Phycology 42: 21–35.CrossRefGoogle Scholar
  84. Woelfel, J., R. Schumann, S. Adler, T. Hübener, and U. Karsten. 2007. Diatoms inhabiting a wind flat of the Baltic Sea: species diversity and seasonal succession. Estuarine, Coastal and Shelf Science 75: 296–307.CrossRefGoogle Scholar
  85. Zimmermann, J., R. Jahn, and B. Gemeinholzer. 2011. Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Organisms, Diversity and Evolution 11: 173–192.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyGeorgetown University Medical CenterWashingtonUSA
  2. 2.Grice Marine LaboratoryCollege of CharlestonCharlestonUSA
  3. 3.Department of Biological SciencesButler UniversityIndianapolisUSA

Personalised recommendations