Skip to main content

How Well Do Restored Intertidal Oyster Reefs Support Key Biogeochemical Properties in a Coastal Lagoon?

Abstract

The restoration of dead/degraded oyster reefs is increasingly pursued worldwide to reestablish harvestable populations or renew ecosystem services. Evidence suggests that oysters can improve water quality, but less is known about the role of associated benthic sediments in promoting biogeochemical processes, such as nutrient cycling and burial. There is also limited understanding of if, or how long postrestoration, a site functions like a natural reef. This study investigated key biogeochemical properties (e.g., physiochemical properties, nutrient pools, microbial community size and activity) in the sediments of dead reefs; 1-, 4-, and 7-year-old restored reefs; and natural reference reefs of the eastern oyster, Crassostrea virginica, in Mosquito Lagoon (FL, USA). Results indicated that most of the measured biogeochemical properties (dissolved organic carbon (C), NH4 +, total C, total nitrogen (N), and the activity of major extracellular enzymes involved in C, N, and phosphorus (P) cycling) increased significantly by 1-year postrestoration, relative to dead reefs, and then remained fairly constant as the reefs continued to age. Few differences were observed in biogeochemical properties between restored reefs of any age (1 to 7 years) and natural reference reefs. Variability among reefs of the same treatment category was often correlated with differences in the number of live oysters, reef thickness, and/or the availability of C and N in the sediments. Overall, this study demonstrates the role of live intertidal oyster reefs as biogeochemical hot spots for nutrient cycling and burial and the rapidity (within 1 year) with which biogeochemical properties can be reestablished following successful restoration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Andersen, J.M. 1976. An ignition method for determination of total phosphorus in lake sediments. Water Research 10: 329–331.

    CAS  Article  Google Scholar 

  • Asmus, R.M., and H. Asmus. 1991. Mussel beds: Limiting or promoting phytoplankton? Journal of Experimental Marine Biology and Ecology 148: 215–232.

    Article  Google Scholar 

  • Beck, Michael W., Robert D. Brumbaugh, Laura Airoldi, Alvar Carranza, Loren D. Coen, Christine Crawford, Omar Defeo, et al. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61: 107–116. https://doi.org/10.1525/bio.2011.61.2.5.

    Article  Google Scholar 

  • Bell, Colin W., Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, and Matthew D. Wallenstein. 2013. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments. https://doi.org/10.3791/50961.

  • Birch, A., and L. Walters. 2012. Restoring intertidal oyster reefs in Mosquito Lagoon: the evolution of a successful model. TNC/NOAA Community-Based Restoration Partnership Program. 70 pp.

  • Campbell, D. 2015. Quantifying the effects of boat wakes on intertidal oyster reefs in a shallow estuary. Orlando: University of Central Florida.

    Google Scholar 

  • Chambers, L.G., T.Z. Osborne, and K.R. Reddy. 2013. Effect of salinity pulsing events on soil organic carbon loss across an intertidal wetland gradient: A laboratory experiment. Biogeochemistry 115: 363–383. https://doi.org/10.1007/s10533-013-9841-5.

    CAS  Article  Google Scholar 

  • Chrost, R.J. 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In Microbial enzymes in aquatic environments, ed. R.J. Chrost, 29–59. New York: Springer.

    Chapter  Google Scholar 

  • Chrost, R.J., and H.J. Krambeck. 1986. Fluorescence correction for measurements of enzyme-activity in natural-waters using methylumbelliferyl substrates. Archiv Fur Hydrobiologie 106: 79–90.

    CAS  Google Scholar 

  • Coen, Loren D., Robert D. Brumbaugh, David Bushek, Ray Grizzle, Mark W. Luckenbach, Martin H. Posey, Sean P. Powers, and S. Gregory Tolley. 2007. Ecosystem services related to oyster restoration. Marine Ecology Progress Series 341: 303–307. https://doi.org/10.3354/meps341299.

    Article  Google Scholar 

  • Cressman, K.A., M.H. Posey, M.A. Mallin, L.A. Leonard, and T.D. Alphin. 2003. Effects of oyster reefs on water quality in a tidal creek estuary. Journal of Shellfish Research 22: 753–762.

    Google Scholar 

  • Dalrymple, D. Joseph, and Ruth H. Carmichael. 2015. Effects of age class on N removal capacity of oysters and implications for bioremediation. Marine Ecology Progress Series 528: 205–220. https://doi.org/10.3354/meps11252.

    CAS  Article  Google Scholar 

  • Dame, Richard F. 1999. Oyster reefs as components of estuarine nutrient cycling: inceidental or controlling? In Oyster reef habitat restoration: a synopsis and synthesis of approaches, ed. Mark W. Luckenbach, Roger Mann, and James A. Wesson, 267–280. Williamsburg: W&M Publish. https://doi.org/10.21220/V5NK51.

  • Dame, Richard F., Richard G. Zingmark, and Elizabeth Haskin. 1984. Oyster reefs as processors of estuarine materials. Journal of Experimental Marine Biology and Ecology 83: 239–247.

    CAS  Article  Google Scholar 

  • Dame, Richard F., T.G. Wolaver, and S.M. Libes. 1985. The summer uptake and release of nitrogen by an intertidal oyster reef. Netherlands Journal of Sea Research 19: 265–268. https://doi.org/10.1016/0077-7579(85)90032-8.

    Article  Google Scholar 

  • Dame, Richard F., Norbert Dankers, Theo Prins, Henk Jongsma, and Aad Smaal. 1991. The influence of mussel beds on nutrients in the western Wadden Sea and eastern Scheldt estuaries. Estuaries 14: 130–138. https://doi.org/10.1007/BF02689345.

    CAS  Article  Google Scholar 

  • Dame, Richard F., John D. Spurrier, and Richard G. Zingmark. 1992. In situ metabolism of an oyster reef. Journal of Experimental Marine Biology and Ecology 164: 147–159. https://doi.org/10.1016/0022-0981(92)90171-6.

    Article  Google Scholar 

  • DeBusk, W.F., and K.R. Reddy. 1998. Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh. Soil Science Society of America Journal 62: 1460–1468. https://doi.org/10.2136/sssaj1998.03615995006200050045x.

    CAS  Article  Google Scholar 

  • DeForest, Jared L. 2009. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil Biology and Biochemistry 41: 1180–1186. https://doi.org/10.1016/j.soilbio.2009.02.029.

    CAS  Article  Google Scholar 

  • Dybas, C.L. 2002. Florida’s Indian River lagoon: An estuary in transition. Bioscience 52: 554–559.

    Article  Google Scholar 

  • Frankignoulle, M, M. Pichon, and J-P. Gattuso. 1995. Aquatic calcification as a source of carbon dioxide. In Carbon sequestration in the biosphere, ed. Max A. Beran, 265–271. Berlin Heidelberg: Springer-Verlag.

  • Gardner, L.M., and J.R. White. 2010. Denitrification enzyme activity as an indicator of nitrate movement through a diversion wetland. Soil Science Society of America Journal 74: 1037–1047. https://doi.org/10.2136/sssaj2008.0354.

    CAS  Article  Google Scholar 

  • Garvis, Stephanie K., Paul E. Sacks, and Linda J. Walters. 2015. Formation, movement, and restoration of dead intertidal oyster reefs in Canaveral National Seashore and Mosquito Lagoon, Florida. Journal of Shellfish Research 34: 251–258. https://doi.org/10.2983/035.034.0206.

    Article  Google Scholar 

  • German, Donovan P., Michael N. Weintraub, A. Stuart Grandy, Christian L. Lauber, Zachary L. Rinkes, and Steven D. Allison. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry 43: 1387–1397. https://doi.org/10.1016/j.soilbio.2011.03.017.

  • Grabowski, Jonathan H., Robert D. Brumbaugh, Robert F. Conrad, Andrew G. Keeler, J. Opaluch, Charles H. Peterson, Michael F. Piehler, Sean P. Powers, and Ashley R. Smyth. 2012. Economic valuation of ecosystem services provided by oyster reefs. Bioscience 62: 900–909. https://doi.org/10.1525/bio.2012.62.10.10.

    Article  Google Scholar 

  • Grizzle, R.E., J.R. Adams, and L.J. Walters. 2002. Historical changes in intertidal oyster (Crassostrea virginica) reefs in a Florida lagoon potentially related to boating activities. Journal of Shellfish Research 21: 749–756.

    Google Scholar 

  • Groffman, Peter M., and James M. Tiedje. 1989. Denitrification in north temperate forest soils: Relationships between denitrification and environmental factors at the landscape scale. Soil Biology and Biochemistry 21: 621–626. https://doi.org/10.1016/0038-0717(89)90054-0.

    Article  Google Scholar 

  • Guo, Lin, Fei Xu, Zhigang Feng, and Guofan Zhang. 2016. A bibliometric analysis of oyster research from 1991 to 2014. Aquaculture International 24: 327–344. https://doi.org/10.1007/s10499-015-9928-1.

    Article  Google Scholar 

  • Hale, R.L., and P.M. Groffman. 2006. Chloride effects on nitrogen dynamics in forested and suburban stream debris dams. Journal of Environmental Quality 35: 2425–2432. https://doi.org/10.2134/jeq2006.0164.

    CAS  Article  Google Scholar 

  • Higgins, Colleen B., Kurt Stephenson, and Bonnie L. Brown. 2011. Nutrient bioassimilation capacity of aquacultured oysters: Quantification of an ecosystem service. Journal of Environment Quality 40: 271. https://doi.org/10.2134/jeq2010.0203.

    CAS  Article  Google Scholar 

  • Higgins, Colleen B., Craig Tobias, Michael F. Piehler, Ashley R. Smyth, Richard F. Dame, Kurt Stephenson, and Bonnie L. Brown. 2013. Effect of aquacultured oyster biodeposition on sediment N2 production in Chesapeake Bay. Marine Ecology Progress Series 473: 7–27. https://doi.org/10.3354/meps10062.

    CAS  Article  Google Scholar 

  • Hoellein, Timothy J., Chester B. Zarnoch, and Raymond E. Grizzle. 2015. Eastern oyster (Crassostrea virginica) filtration, biodeposition, and sediment nitrogen cycling at two oyster reefs with contrasting water quality in Great Bay Estuary (New Hampshire, USA). Biogeochemistry 122: 113–129. https://doi.org/10.1007/s10533-014-0034-7.

    CAS  Article  Google Scholar 

  • Hoppe, Hans-Georg. 1993. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. In Handbook of methods in aquatic microbial ecology, eds. Paul F. Kemp, Barry F. Sherr, Evelyn B. Sherr, and Jonathan J. Cole, 423–431. Boca Raton: CRC Press LLC.

  • Huang, Qinghui, Zijian Wang, Chunxia Wang, Shengrui Wang, and Xiangcan Jin. 2005. Phosphorus release in response to pH variation in the lake sediments with different ratios of iron-bound P to calcium-bound P. Chemical Speciation and Bioavailability 17: 55–61. https://doi.org/10.3184/095422905782774937.

    CAS  Article  Google Scholar 

  • Kellogg, M. Lisa, Jeffrey C. Cornwell, Michael S. Owens, and Kennedy T. Paynter. 2013. Denitrification and nutrient assimilation on a restored oyster reef. Marine Ecology Progress Series 480: 1–19. https://doi.org/10.3354/meps10331.

    CAS  Article  Google Scholar 

  • Kellogg, M. Lisa, Ashley R. Smyth, Mark W. Luckenbach, Ruth H. Carmichael, Bonnie L. Brown, Jeffrey C. Cornwell, Michael F. Piehler, Michael S. Owens, D. Joseph Dalrymple, and Colleen B. Higgins. 2014. Use of oysters to mitigate eutrophication in coastal waters. Estuarine, Coastal and Shelf Science 151: 156–168. https://doi.org/10.1016/j.ecss.2014.09.025.

    CAS  Article  Google Scholar 

  • Krom, M.D., and R.A. Berner. 1981. The diagenesis of phosphorus in a nearshore marine sediment. Geochimica et Cosmochimica Acta 45: 207–216.

    CAS  Article  Google Scholar 

  • Laing, I., P. Walker, and F. Areal. 2006. Return of the native - is European oyster (Ostrea edulis) stock restoration in the UK feasible? Aquatic Living Resources 19: 283–287. https://doi.org/10.1051/Alr:2006029.

    Article  Google Scholar 

  • Leffler, Merrill and Pauli Hayes. 2004. Oyster research and restoration in U.S. coastal waters: research priorities and strategies. www.mdsg.umd.edu/sites/default/files/files/store/oysterrestoration_summary.pdf. Accessed 23 Aug 2017.

  • Lenihan, Hunter S. 1999. Physical-biological coupling on oyster reefs: How habitat structure influences individual performance. Ecological Monographs 69: 251–275.

    Google Scholar 

  • Leschine, S.B. 1995. Cellulose degradation in anaerobic environments. Annual Review of Microbiology 49: 399–426. https://doi.org/10.1146/annurev.micro.49.1.399.

    CAS  Article  Google Scholar 

  • Lindemann, Samantha, Chester B. Zarnoch, Domenic Castignetti, and Timothy J. Hoellein. 2016. Effect of eastern oysters (Crassostrea virginica) and seasonality on nitrite reductase gene abundance (nirS, nirK, nrfA) in an urban estuary. Estuaries and Coasts 39: 218–232. https://doi.org/10.1007/s12237-015-9989-4.

    CAS  Article  Google Scholar 

  • Makoi, Jhjr, and P.A. Ndakidemi. 2008. Selected soil enzymes: Examples of their potential roles in the ecosystem. African Journal of Biotechnology 7: 181–191.

    CAS  Google Scholar 

  • McClain, Michael E., Elizabeth W. Boyer, C. Lisa Dent, Sarah E. Gergel, Nancy B. Grimm, Peter M. Groffman, Stephen C. Hart, et al. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6: 301–312. https://doi.org/10.1007/s10021-003-0161-9.

    CAS  Article  Google Scholar 

  • Meyer, David L., Edward C. Townsend, and Gordon W. Thayer. 1997. Stabilization and erosion control value of oyster cultch for intertidal marsh. Restoration Ecology 5: 93–99. https://doi.org/10.1046/j.1526-100X.1997.09710.x.

    Article  Google Scholar 

  • Mortazavi, Behzad, Alice C. Ortmann, Lei Wang, Rebecca J. Bernard, Christina L. Staudhammer, J. Donald Dalrymple, Ruth H. Carmichael, and Alice A. Kleinhuizen. 2015. Evaluating the impact of oyster (Crassostrea virginica) gardening on sediment nitrogen cycling in a subtropical estuary. Bulletin of Marine Science 91: 323–341. https://doi.org/10.5343/bms.2014.1060.

    Article  Google Scholar 

  • Murphy, Anna E., Iris C. Anderson, and Mark W. Luckenbach. 2015. Enhanced nutrient regeneration at commercial hard clam (Mercenaria mercenaria) beds and the role of macroalgae. Marine Ecology Progress Series 530: 135–151. https://doi.org/10.3354/meps11301.

    CAS  Article  Google Scholar 

  • Nannipieri, P., J. Ascher, M.T. Ceccherini, L. Landi, G. Pietramellara, and G. Renella. 2003. Microbial diversity and soil functions. European Journal of Soil Science 54: 655–670. https://doi.org/10.1046/j.1351-0754.2003.0556.x.

    Article  Google Scholar 

  • Newell, R.I.E., Jeffrey C. Cornwell, and Michael S. Owens. 2002. Influence of simulated bivalve biodeposition and microphytobenthos on sediment nitrogen dynamics: A laboratory study. Limnology and Oceanography 47: 1367–1379. https://doi.org/10.4319/lo.2002.47.5.1367.

    Article  Google Scholar 

  • Newell, R.I.E, T.R. Fisher, R.R. Holyoke, and J.C. Cornwell. 2005. Influence of eastern oysters on nitrogen and phosphorus regeneration in Chesapeake Bay, USA. In The comparative roles of suspension feeders in ecosystems, ed. R. Dame and S. Olenin, 93–120. Dordrecht: Springer pp. 93–120.

  • Nizzoli, Daniele, David T. Welsh, Marco Bartoli, and Pierluigi Viaroli. 2005. Impacts of mussel (Mytilus galloprovincialis) farming on oxygen consumption and nutrient recycling in a eutrophic coastal lagoon. Hydrobiologia 550: 183–198. https://doi.org/10.1007/s10750-005-4378-9.

    CAS  Article  Google Scholar 

  • Peterson, Charles H., Jonathan H. Grabowski, and Sean P. Powers. 2003. Estimated enhancement of fish production resulting from restoring oyster reef habitat: Quantitative valuation. Marine Ecology Progress Series 264: 249–264. https://doi.org/10.3354/meps264249.

    Article  Google Scholar 

  • La Peyre, Megan, Jessica Furlong, Laura A. Brown, Bryan P. Piazza, and Ken Brown. 2014. Oyster reef restoration in the northern Gulf of Mexico: Extent, methods and outcomes. Ocean and Coastal Management 89: 20–28. https://doi.org/10.1016/j.ocecoaman.2013.12.002.

    Article  Google Scholar 

  • Piehler, M.F., and A.R. Smyth. 2011. Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere. https://doi.org/10.1890/ES10-00082.1.

  • Plutchak, Rochelle, Kelly Major, Cebrian Just, C. Drew Foster, Mary Elizabeth C. Miller, Andrea Anton, Kate L. Sheehan, Kenneth L. Heck, and Sean P. Powers. 2010. Impacts of oyster reef restoration on primary productivity and nutrient dynamics in tidal creeks of the north Central Gulf of Mexico. Estuaries and Coasts 33: 1355–1364. https://doi.org/10.1007/s12237-010-9327-9.

    CAS  Article  Google Scholar 

  • Pollack, Jennifer, David Yoskowitz, Hae Cheol Kim, and Paul A. Montagna. 2013. Role and value of nitrogen regulation provided by oysters (Crassostrea virginica) in the Mission-Aransas Estuary, Texas, USA. PloS One 8: 6–13. https://doi.org/10.1371/journal.pone.0065314.

    Google Scholar 

  • Reddy, K.R., and R. DeLaune. 2008. Biogeochemistry of wetlands: Science and applications. New York: CRC.

    Book  Google Scholar 

  • Smyth, Ashley R., Suzanne P. Thompson, Kaylyn N. Siporin, Wayne S. Gardner, Mark J. McCarthy, and Michael F. Piehler. 2013. Assessing nitrogen dynamics throughout the estuarine landscape. Estuaries and Coasts 36: 44–55. https://doi.org/10.1007/s12237-012-9554-3.

    CAS  Article  Google Scholar 

  • St. Johns River Water Management District. 2016. The Indian River Lagoon: An estuary of national significance. http://www.sjrwmd.com/indianriverlagoon/. Accessed 26 Oct 2016.

  • Stenberg, B., M. Johansson, M. Pell, K. Sjodahl-Svensson, J. Stenstrom, and L. Torstensson. 1998. Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biology & Biochemistry 30: 393–402. https://doi.org/10.1016/s0038-0717(97)00125-9.

    CAS  Article  Google Scholar 

  • Styles, Richard. 2015. Flow and turbulence over an oyster reef. Journal of Coastal Research 31: 978–985. https://doi.org/10.2112/JCOASTRES-D-14-00115.1.

    Article  Google Scholar 

  • Tiedje, J.M. 1982. Denitrification. In Methods of soil analysis. Part 2, ed. A.L. Page, 1011–1026. Madison: ASA-SSSA.

    Google Scholar 

  • USEPA. 1993. Methods for the determination of inorganic substances in environmental samples, EPA/600/R-93/100. Washington: U.S. Environmental Protection Agency.

  • Vance, E.D.D., P.C.C. Brookes, and D.S.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass-C. Soil Biology & Biochemistry 19: 703–707. https://doi.org/10.1016/0038-0717(87)90052-6.

    CAS  Article  Google Scholar 

  • Waldbusser, George G., Ryan A. Steenson, and Mark A. Green. 2011. Oyster shell dissolution rates in estuarine waters: Effects of pH and shell legacy. Journal of Shellfish Research 30: 659–669. https://doi.org/10.2983/035.030.0308.

    Article  Google Scholar 

  • Waldbusser, George G., Eric N. Powell, and Roger Mann. 2013. Ecosystem effects of shell aggregations and cycling in coastal waters: An example of Chesapeake Bay oyster reefs. Ecology 94: 895–903. https://doi.org/10.1890/12-1179.1.

    Article  Google Scholar 

  • Wall, L.M., Linda J. Walters, R.E. Grizzle, and P.E. Sacks. 2005. Recreational boating activity and its impact on the recruitment and survival of the oyster Crassostrea virginica on intertidal reefs in Mosquito Lagoon, Florida. Journal of Shellfish Research 24: 965–973. https://doi.org/10.2983/0730-8000(2005)24.

    Article  Google Scholar 

  • Walters, Linda J. 2016. Oyster reef deployment and monitoring: Final technical report. Indian River Lagoon National Estuary Program, 25 pp.

  • White, J.R., and K.R. Reddy. 1999. Influence of nitrate and phosphorus loading on denitrifying enzyme activity in Everglades wetland soils. Soil Science Society of America Journal 63: 1945. https://doi.org/10.2136/sssaj1999.6361945x.

    CAS  Article  Google Scholar 

  • White, J.R., and K.R.R. Reddy. 2000. Influence of phosphorus loading on organic nitrogen mineralization of Everglades soils. Soil Science Society of America Journal 64: 1525. https://doi.org/10.2136/sssaj2000.6441525x.

    CAS  Article  Google Scholar 

  • Wilberg, Michael J., Maude E. Livings, Jennifer S. Barkman, Brian T. Morris, and Jason M. Robinson. 2011. Overfishing, disease, habitat loss, and potential extirpation of oysters in upper Chesapeake Bay. Marine Ecology Progress Series 436: 131–144. https://doi.org/10.3354/meps09161.

    Article  Google Scholar 

  • Wildish, D.J., and D.D. Kristmanson. 1997. Benthic suspension feeders and flow. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Yoshinari, Tadashi, and Roger Knowles. 1976. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochemical and Biophysical Research Communications 69: 705–710. https://doi.org/10.1016/0006-291X(76)90932-3.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lacie Anderson, Phyllis Klarmann, Meagan Mindalie, Jaice Metherall, John Heiland, and Janet Ho for assistance with field sampling, as well as the cooperation of Canaveral National Seashore and the St. Johns Water Management District in the completion of this study. This work was supported by the Indian River Lagoon National Estuarine Program and the National Science Foundation, under the Coupled Natural-Human Systems program, award #1617374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa G. Chambers.

Additional information

Communicated by Marco Bartoli

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chambers, L.G., Gaspar, S.A., Pilato, C.J. et al. How Well Do Restored Intertidal Oyster Reefs Support Key Biogeochemical Properties in a Coastal Lagoon?. Estuaries and Coasts 41, 784–799 (2018). https://doi.org/10.1007/s12237-017-0311-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0311-5

Keywords

  • Crassostrea virginica
  • Shellfish
  • Restoration
  • Biogeochemistry
  • Carbon
  • Nitrogen
  • Phosphorus