Wind-Driven Dissolved Organic Matter Dynamics in a Chesapeake Bay Tidal Marsh-Estuary System

Abstract

Controls on organic matter cycling across the tidal wetland-estuary interface have proved elusive, but high-resolution observations coupled with process-based modeling can be a powerful methodology to address shortcomings in either methodology alone. In this study, detailed observations and three-dimensional hydrodynamic modeling are used to examine biogeochemical exchanges in the marsh-estuary system of the Rhode River, MD, USA. Analysis of observations near the marsh in 2015 reveals a strong relationship between marsh creek salinity and dissolved organic matter fluorescence (fDOM), with wind velocity indirectly driving large amplitude variation of both salinity and fDOM at certain times of the year. Three-dimensional model results from the Finite Volume Community Ocean Model implemented for the wetland system with a new marsh grass drag module are consistent with observations, simulating sub-tidal variability of marsh creek salinity. The model results exhibit an interaction between wind-driven variation in surface elevation and flow velocity at the marsh creek, with northerly winds driving increased freshwater signal and discharge out of the modeled wetland during precipitation events. Wind setup of a water surface elevation gradient axially along the estuary drives the modeled local sub-tidal flow and thus salinity variability. On sub-tidal time scales (>36 h, <1 week), wind is important in mediating dissolved organic matter releases from the Kirkpatrick Marsh into the Rhode River.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Blumberg, Alan F., and David M. Goodrich. 1990. Modeling of wind-induced destratification in Chesapeake Bay. Estuaries 13.3: 236–249.

    Article  Google Scholar 

  2. Bockelmann, Anna C., Jan P. Bakker, Reimert Neuhaus, and Jochim Lage. 2002. The relation between vegetation zonation, elevation and inundation frequency in a Wadden Sea salt marsh. Aquatic Botany 73.3: 211–221.

    Article  Google Scholar 

  3. Breitburg, D. L., A. H. Hines, T. E. Jordan, M. K. McCormick, D. E. Weller, and D. F. Whigham. 2008. Landscape patterns, nutrient discharges, and biota of the Rhode River estuary and its watershed: Contribution of the Smithsonian Environmental Research Center to the Pilot Integrated Ecosystem Assessment. Smithsonian Environmental Research Center, Edgewater, Maryland.

  4. Bridgham, Scott D., J. Patrick Megonigal, Jason K. Keller, Norman B. Bliss, and Carl Trettin. 2006. The carbon balance of North American wetlands. Wetlands 26.4: 889–916.

    Article  Google Scholar 

  5. Chen, Changsheng, Hedong Liu, and Robert C. Beardsley. 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology 20.1: 159–186.

    Article  Google Scholar 

  6. Chen, Changsheng, Jianhua Qi, Chunyan Li, Robert C. Beardsley, Huichan Lin, Randy Walker, and Keith Gates. 2008. Complexity of the flooding/drying process in an estuarine tidal-creek salt-marsh system: An application of FVCOM. Journal of Geophysical Research: Oceans 113.C7.

  7. Chen, C., Beardsley, R.C., Cowles, G., Qi, J., Lai, Z., Gao, G., Stuebe, D., Liu, H., Xu, Q., Xue, P. and Ge, J., 2013. An unstructured-grid, finite-volume community ocean model FVCOM User Manual. SMAST-UMASSD Technical Report-13-0701, University of Massachusetts-Dartmouth. 37–44.

  8. Childers, Daniel L., Stephen Cofer-Shabica, and L. Nakashima. 1993. Spatial and temporal variability in marsh-water column interactions in a southeastern USA salt marsh estuary. Marine Ecology Progress Series 95.1-2: 25–38.

    Article  Google Scholar 

  9. Chmura, Gail L., Shimon C. Anisfeld, Donald R. Cahoon, and James C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global biogeochemical cycles 17.4.

  10. Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine, Coastal and Shelf Science. 50.3: 315–331.

    Article  Google Scholar 

  11. Correll, David L. 1981. Nutrient mass balances for the watershed, headwaters intertidal zone, and basin of the Rhode River estuary. Limnology and Oceanography 26.6: 1142–1149.

    Article  Google Scholar 

  12. Dame, R., T. Chrzanowski, K. Bildstein, B. Kjerfve, H. McKellar, D. Nelson, J. Spurrier, S. Stancyk, H. Stevenson, J. Vernberg, and R. Zingmark. 1986. The outwelling hypothesis and North inlet, South Carolina. Marine Ecology Progress Series 33.2: 217–229.

    Article  Google Scholar 

  13. Dame, R.F., J.D. Spurrier, T.M. Williams, B. Kjerfve, R.G. Zingmark, R.G. Wolaver, R.G. Chrzanowski, R.G. McKellar, R.G. Vernberg. 1991. Annual material processing by a salt marsh-estuarine basin in South Carolina, USA. Marine Ecology Progress Series 72:153–166.

  14. Del Vecchio, Rossana, and Neil V. Blough. 2002. Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling. Marine Chemistry 78.4: 231–253.

    Article  Google Scholar 

  15. Downing, Bryan D., Brian A. Pellerin, Brian A. Bergamaschi, John Franco Saraceno, and Tamara E.C. Kraus. 2012. Seeing the light: The effects of particles, dissolved materials, and temperature on in situ measurements of DOM fluorescence in rivers and streams. Limnology and Oceanography: Methods 10.10: 767–775.

    Google Scholar 

  16. Fagherazzi, Sergio, Patricia L. Wiberg, Stijn Temmerman, Eric Struyf, Yong Zhao, and Peter A. Raymond. 2013. Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecological Processes 2.1: 1–16.

    Google Scholar 

  17. Fairall, Chris W., Edward F. Bradley, David P. Rogers, James Bearer Edson, and George S. Young. 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. Journal of Geophysical Research: Oceans 101.C2: 3747–3764.

    Article  Google Scholar 

  18. Geyer, W.R. 1996. Influence of wind on dynamics and flushing of shallow estuaries. Estuarine, Coastal and Shelf Science 44.6: 713–722.

    Google Scholar 

  19. Haddad, Jana, Seth Lawler, and Celso M. Ferreira. 2016. Assessing the relevance of wetlands for storm surge protection: a coupled hydrodynamic and geospatial framework. Natural Hazards 80.2: 839–861.

    Article  Google Scholar 

  20. Herrmann, Maria, Raymond G. Najjar, W. Michael Kemp, Richard B. Alexander, Elizabeth W. Boyer, Wei-Jun Cai, Peter C. Griffith, Kevin D. Kroeger, S. Leigh McCallister, and Richard A. Smith. 2015. Net ecosystem production and organic carbon balance of US East Coast estuaries: a synthesis approach. Global Biogeochemical Cycles 29.1: 96–111.

    Article  Google Scholar 

  21. Ikegami, M., D. F. Whigham, and M. J. A. Werger. 2006. Scirpus olneyi (Cyperaceae) shows phenotypical differentiation in a salt marsh on the east coast of the USA. Polish Botanical Studies.

  22. Jordan, Thomas E., and David L. Correll. 1991. Continuous automated sampling of tidal exchanges of nutrients by brackish marshes. Estuarine, Coastal and Shelf Science 32.6: 527–545.

    Article  Google Scholar 

  23. Jordan, Thomas E., David L. Correll, Joseph Miklas, and Donald E. Weller. 1991. Nutrients and chlorophyll at the interface of a watershed and an estuary. Limnology and Oceanography 36.2: 251–267.

    Article  Google Scholar 

  24. Kumar, Sanjiv, and Venkatesh Merwade. 2011. Evaluation of NARR and CLM3. 5 outputs for surface water and energy budgets in the Mississippi River Basin. Journal of Geophysical Research: Atmospheres 116: D8.

    Google Scholar 

  25. Large, W.G., and S. Pond. 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography 11.3: 324–336.

    Article  Google Scholar 

  26. Leonard, Lynn A., and Alexander L. Croft. 2006. The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine, Coastal and Shelf Science 69.3: 325–336.

    Article  Google Scholar 

  27. Lu, Yuehan, James E. Bauer, Elizabeth A. Canuel, Yamashita Youhei, R.M. Chambers, and Rudolf Jaffé. 2013. Photochemical and microbial alteration of dissolved organic matter in temperate headwater streams associated with different land use. Journal of Geophysical Research: Biogeosciences 118.2: 566–580.

    Google Scholar 

  28. MATLAB. n.d. Statistics Toolbox and Signal Processing Toolbox, Release R2014B, The MathWorks, Inc., Natick, Massachusetts, United States.

  29. Miller, William L., Mary Ann Moran, Wade M. Sheldon, Richard G. Zepp, and Stephen Opsahl. 2002. Determination of apparent quantum yield spectra for the formation of biologically labile photoproducts. Limnology and Oceanography 47.2: 343–352.

    Article  Google Scholar 

  30. Moran, Mary Ann, Wade M. Sheldon, and Richard G. Zepp. 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography 45.6: 1254–1264.

    Article  Google Scholar 

  31. Nepf, H.M. 1999. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research 35.2: 479–489.

    Article  Google Scholar 

  32. Nixon, Scott W. 1980. Between coastal marshes and coastal waters—a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. Springer US.

  33. NOAA Tides and Currents. n.d. https://tidesandcurrents.noaa.gov/. Accessed 6 April, 2016.

  34. R Core Team 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  35. Rasse, Daniel P., Gary Peresta, and Bert G. Drake. 2005. Seventeen years of elevated CO2 exposure in a Chesapeake Bay wetland: sustained but contrasting responses of plant growth and CO2 uptake. Global Change Biology 11.3: 369–377.

    Article  Google Scholar 

  36. Schubel, J.R., and D.W. Pritchard. 1986. Responses of upper Chesapeake Bay to variations in discharge of the Susquehanna River. Estuaries 9.4: 236–249.

    Article  Google Scholar 

  37. Scully, Malcolm E., Carl Friedrichs, and John Brubaker. 2005. Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries 28.3: 321–326.

    Article  Google Scholar 

  38. Sherwood, Chris. 1989 Revised by P. Wiberg, 2003. MATLAB function lpfilt. The MathWorks Inc., Natick, Massachusetts, United States.

  39. Stevenson, J. Court, Larry G. Ward, and Michael S. Kearney. 1988. Sediment transport and trapping in marsh systems: implications of tidal flux studies. Marine Geology 80.1: 37–59.

    Article  Google Scholar 

  40. Stow, Craig A., Jason Jolliff, Dennis J. McGillicuddy, Scott C. Doney, J. Icarus Allen, Marjorie A.M. Friedrichs, Kenneth A. Rose, Philip Wallhead. 2009. Skill assessment for coupled biological/physical models of marine systems. Journal of Marine Systems 76(1–2):4–15.

  41. Sulzberger, Barbara, and Edith Durisch-Kaiser. 2009. Chemical characterization of dissolved organic matter (DOM): a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquatic Sciences 71.2: 104–126.

    Article  Google Scholar 

  42. Teal, John M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology 43.4: 614–624.

    Article  Google Scholar 

  43. Trapletti, Adrian and Kurt Hornik 2015. tseries: time series analysis and computational finance. R package version 0.10–34.

  44. Twardowski, Michael S., Emmanuel Boss, James M. Sullivan, and Percy L. Donaghay. 2004. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Marine Chemistry 89.1: 69–88.

    Article  Google Scholar 

  45. Tzortziou, Maria, Christopher L. Osburn, and Patrick J. Neale. 2007. Photobleaching of dissolved organic material from a tidal marsh-estuarine system of the Chesapeake Bay. Photochemistry and Photobiology 83.4: 782–792.

    Article  Google Scholar 

  46. Tzortziou, Maria, Patrick J. Neale, Christopher L. Osburn, J. Patrick Megonigal, Nagamitsu Maie, and Rudolf Jaffé. 2008. Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnology and Oceanography 53.1: 148–159.

    Article  Google Scholar 

  47. Tzortziou, Maria, Patrick J. Neale, J. Patrick Megonigal, Crystal Lee Pow, and Megan Butterworth. 2011. Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary. Marine Ecology Progress Series 426: 41–56.

    CAS  Article  Google Scholar 

  48. Vinnikov, Konstantin. 2015. Baltimore – Washington Airport Wjind Climatology. http://www.atmos.umd.edu/~kostya/NIST/WIND/SURFACE/KBWI_2010_10or13_WIND_2.pdf. Accessed March 8, 2017.

  49. Wang, D.P. 1979a. Subtidal sea level variations in the Chesapeake Bay and relations to atmospheric forcing. Journal of Physical Oceanography. 9.2: 413–421.

    Article  Google Scholar 

  50. Wang, D.P. 1979b. Wind-driven circulation in the Chesapeake Bay, winter, 1975. Journal of Physical Oceanography. 9: 564–572.

    Article  Google Scholar 

  51. Wang, Zhaohui Aleck, and Wei-Jun Cai. 2004. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): A marsh CO2 pump. Limnology and Oceanography 49.2: 341–354.

  52. Wang, Taiping, Tarang Khangaonkar, Wen Long, and Gary Gill. 2014. Development of a kelp-type structure module in a coastal ocean model to assess the hydrodynamic impact of seawater uranium extraction technology. Journal of Marine Science and Engineering 2.1: 81–92.

    Article  Google Scholar 

  53. Weather Underground. n.d. https://www.wunderground.com/us/md/annapolis. Accessed 6 April 2016.

  54. Xu, Jiangtao, Wen Long, Jerry D. Wiggert, Lyon W.J. Lanerolle, Christopher W. Brown, Raghu Murtugudde, and Raleigh R. Hood. 2012. Climate forcing and salinity variability in Chesapeake Bay, USA. Estuaries and Coasts. 35.1: 237–261.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Andrew Peresta for deploying and maintaining the EXO2 sonde at the Kirkpatrick Marsh Creek, the Smithsonian Institution and Smithsonian Environmental Research Center for support, and the entire MARSHCYCLE team for many thoughtful discussions. We would also like to thank two anonymous reviewers for comments that helped greatly improve this manuscript. This research was supported by National Aeronautics and Space Administration grant NNH13ZDA001N-CARBON. Contact the corresponding author for model forcing and output and post processing scripts. This is University of Maryland Center for Environmental Science contribution # 5392 and Smithsonian MarineGEO network contribution # 21.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Blake Clark.

Additional information

Communicated by Mark J. Brush

Electronic supplementary material

Fig. S1

(a) Unfiltered fDOM and (b) depth for the entire sampling period in 2015. Gaps in the data indicate periods when the EXO-2 Sonde was not deployed. (DOCX 110 kb)

Fig. S2

Conceptual diagram of the estuarine surface gradient progression during a “typical” wind progression in the Rhode River, MD in the spring and fall. As southerly winds blow a barotropic surface pressure gradient sets up in the back of the Rhode River depicted by the H in (a) that forces water back towards the marsh, depressing flow out of the wetland depicted by the shaded region. As Northwesterly winds progress, local wind driven flow enhances flow out of the creek back towards the marsh, while local wind effects set up a low pressure in the back and mouth of the Rhode River, depicted by the L’s (b). (DOCX 145 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clark, J.B., Long, W., Tzortziou, M. et al. Wind-Driven Dissolved Organic Matter Dynamics in a Chesapeake Bay Tidal Marsh-Estuary System. Estuaries and Coasts 41, 708–723 (2018). https://doi.org/10.1007/s12237-017-0295-1

Download citation

Keywords

  • Tidal wetlands
  • Chesapeake Bay
  • Hydrology
  • Dissolved organic matter
  • FVCOM