Skip to main content

Potential Salinity and Temperature Futures for the Chesapeake Bay Using a Statistical Downscaling Spatial Disaggregation Framework

Abstract

Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical properties of estuaries, with impacts on resident organisms. However, projections from general circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here, we statistically downscaled near-surface air temperature and precipitation projections to the scale of the Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow using a water balance model and finally to spatially resolved Chesapeake Bay surface temperature and salinity using statistical model trees. The low computational cost of this approach allowed rapid assessment of projected changes from four GCMs spanning a range of potential futures under a high CO2 emission scenario, for four different downscaling methods. Choice of GCM contributed strongly to the spread in projections, but choice of downscaling method was also influential in the warmest models. Models projected a ~2–5.5 °C increase in surface water temperatures in the Chesapeake Bay by the end of the century. Projections of salinity were more uncertain and spatially complex. Models showing increases in winter-spring streamflow generated freshening in the Upper Bay and tributaries, while models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay environment have implications for fish and invertebrate habitats, as well as migration, spawning phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role of statistical downscaling to complement dynamical approaches in assessing climate change impacts in dynamically challenging estuaries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Adam, J.C., and D.P. Lettenmaier. 2003. Adjustment of global gridded precipitation for systematic bias. Journal of Geophysical Research-Atmospheres 108: 4257. doi:10.1029/2002JD002499.

    Article  Google Scholar 

  • Atwood, H.L., S.P. Young, J.R. Tomasso Jr., and T.I. Smith. 2001. Salinity and temperature tolerances of black sea bass juveniles. North American Journal of Aquaculture 63: 285–288.

    Article  Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.

    Article  Google Scholar 

  • Beck, M.W., K.L. Heck Jr., K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, C.G. Hays, K. Hoshino, T.J. Minello, and R.J. Orth. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51: 633–641.

    Article  Google Scholar 

  • Bell, R.J., J.A. Hare, J.P. Manderson, and D.E. Richardson. 2014. Externally driven changes in the abundance of summer and winter flounder. ICES Journal of Marine Science 71: 2416–2428.

    Article  Google Scholar 

  • Benestad, R.E., I. Hanssen-Bauer, and D. Chen. 2008. Empirical-statistical downscaling. New Jersey: World Scientific Publishing Company Incorporated.

    Book  Google Scholar 

  • Bever, A.J., M.A.M. Friedrichs, C.T. Friedrichs, M.E. Scully, and L.W.J. Lanerolle. 2013. Combining observations and numerical model results to improve estimates of hypoxic volume within the Chesapeake Bay, USA. Journal of Geophysical Research, Oceans 118: 4924–4944.

    Article  Google Scholar 

  • Boesch, D.F., R.B. Brinsfield, and R.E. Magnien. 2001. Chesapeake Bay eutrophication. Journal of Environmental Quality 30: 303–320.

    Article  CAS  Google Scholar 

  • Bosshard, T., S. Kotlarski, M. Zappa, and C. Schär. 2014. Hydrological climate-impact projections for the Rhine River: GCM–RCM uncertainty and separate temperature and precipitation effects. Journal of Hydrometeorology 15: 697–713.

    Article  Google Scholar 

  • Breitburg, D.L. 1990. Near-shore hypoxia in the Chesapeake Bay: patterns and relationships among physical factors. Estuarine, Coastal and Shelf Science 30: 593–609.

    Article  CAS  Google Scholar 

  • Brown, C.W., R.R. Hood, W. Long, J. Jacobs, D.L. Ramers, C. Wazniak, J.D. Wiggert, R. Wood, and J. Xu. 2013. Ecological forecasting in Chesapeake Bay: using a mechanistic-empirical modeling approach. Journal of Marine Systems 125: 113–125.

    Article  Google Scholar 

  • Brown, L.R., L.M. Komoroske, R.W. Wagner, T. Morgan-King, J.T. May, R.E. Connon, and N.A. Fangue. 2016. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish. PloS One 11: e0146724. doi:10.1371/journal.pone.0146724.

    Article  CAS  Google Scholar 

  • Cannon, A.J. 2010. A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrological Processes 24: 673–685.

    Article  Google Scholar 

  • Cannon, A.J. 2011. Quantile regression neural networks: implementation in R and application to precipitation downscaling. Computers and Geosciences 37: 1277–1284.

    Article  Google Scholar 

  • Cannon, A.J., and P.H. Whitfield. 2002. Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. Journal of Hydrology 259: 136–151.

    Article  Google Scholar 

  • Chen, M., W. Shi, P. Xie, V. Silva, V.E. Kousky, R.W. Higgins, and J.E. Janowiak. 2008. Assessing objective techniques for gauge-based analyses of global daily precipitation. Journal of Geophysical Research-Atmospheres: 113. doi:10.1029/2007JD009132.

  • Chen, J., F.P. Brissette, A. Poulin, and R. Leconte. 2011. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resources Research 47. doi:10.1029/2011WR010602.

  • Chen, J., F.P. Brissette, D. Chaumont, and M. Braun. 2013. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. Journal of Hydrology 479: 200–214.

    Article  Google Scholar 

  • Chen, X., K. Alizad, D. Wang, and S.C. Hagen. 2014. Climate change impact on runoff and sediment loads to the Apalachicola River at seasonal and event scales. Journal of Coastal Research 68: 35–42.

    Article  Google Scholar 

  • Cheng, P., M. Li, and Y. Li. 2013. Generation of an estuarine sediment plume by a tropical storm. Journal of Geophysical Research, Oceans 118: 856–868.

    Article  Google Scholar 

  • Cheung, W.W., M.C. Jones, G. Reygondeau, C.A. Stock, V.W. Lam, and T.L. Frölicher. 2016. Structural uncertainty in projecting global fisheries catches under climate change. Ecological Modelling 325: 57–66.

    Article  CAS  Google Scholar 

  • Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, A.J. Payne, W.T. Pfeffer, D. Stammer, and A.S. Unnikrishnan. 2013. Sea level change. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. New York: Cambridge University Press, Cambridge, United Kingdom and New York.

    Google Scholar 

  • Cloern, J.E., P.C. Abreu, J. Carstensen, L. Chauvaud, R. Elmgren, J. Grall, H. Greening, J.O.R. Johansson, M. Kahru, E.T. Sherwood, and J. Xu. 2016. Human activities and climate variability drive fast-paced change across the world’s estuarine–coastal ecosystems. Global Change Biology 22: 513–529.

    Article  Google Scholar 

  • Constantin De Magny, G., W. Long, C.W. Brown, R.R. Hood, A. Huq, R. Murtugudde, and R.R. Colwell. 2009. Predicting the distribution of Vibrio spp. in the Chesapeake Bay: a Vibrio cholerae case study. EcoHealth 6: 378–389.

    Article  Google Scholar 

  • Costa, M.J., H.N. Cabral, P. Drake, A.N. Economou, C. Ferandez-Delgado, L. Gordo, J. Marchand, and R. Thiel. 2002. Recruitment and production of commercial species in estuaries. In Fishes in estuaries, ed. M. Elliott and K.L. Hemingway, 54–123. Hoboken: Blackwell Science.

    Chapter  Google Scholar 

  • Cotton, C.F., R.L. Walker, and T.C. Recicar. 2003. Effects of temperature and salinity on growth of juvenile black sea bass, with implications for aquaculture. North American Journal of Aquaculture 65: 330–338.

    Article  Google Scholar 

  • Demaria, E.M., R.N. Palmer, and J.K. Roundy. 2016. Regional climate change projections of streamflow characteristics in the Northeast and Midwest US. Journal of Hydrology: Regional Studies 5: 309–323.

    Google Scholar 

  • Dennison, W.C., R.J. Orth, K.A. Moore Jr., J.C. Stevenson, V. Carter, S. Kollar, P.W. Bergstrom, and R.A. Batiuk. 1993. Assessing water quality with submerged aquatic vegetation. Bioscience 43: 86–94.

    Article  Google Scholar 

  • Diaz-Nieto, J., and R.L. Wilby. 2005. A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Climatic Change 69: 245–268.

    Article  Google Scholar 

  • Dixon, K.W., J.R. Lanzante, M.J. Nath, K. Hayhoe, A. Stoner, A. Radhakrishnan, V. Balaji, and C.F. Gaitán. 2016. Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results? Climatic Change 135: 395–408.

    Article  Google Scholar 

  • Edgar, G.J., N.S. Barrett, D.J. Graddon, and P.R. Last. 2000. The conservation significance of estuaries: a classification of Tasmanian estuaries using ecological, physical and demographic attributes as a case study. Biological Conservation 92: 383–397.

    Article  Google Scholar 

  • Elith, J., J.R. Leathwick, and T. Hastie. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813.

    Article  CAS  Google Scholar 

  • Fan, Y., H. van den Dool, and H. 2008. A global monthly land surface air temperature analysis for 1948–present. Journal of Geophysical Research-Atmospheres 113. doi:10.1029/2007JD008470.

  • Fasbender, D., and T.B.M.J. Ouarda. 2010. Spatial Bayesian model for statistical downscaling of AOGCM to minimum and maximum daily temperatures. Journal of Climate 23: 5222–5242.

    Article  Google Scholar 

  • Feng, Y., M.A.M. Friedrichs, J. Wilkin, H. Tian, Q. Yang, E.E. Hofmann, J.D. Wiggert, and R.R. Hood. 2015. Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean biogeochemical modeling system: model description, evaluation, and nitrogen budgets. Journal of Geophysical Research–Biogeosciences 120: 1666–1695.

    Article  Google Scholar 

  • Feyrer, F., J.E. Cloern, L.R. Brown, M.A. Fish, K.A. Hieb, and R.D. Baxter. 2015. Estuarine fish communities respond to climate variability over both river and ocean basins. Global Change Biology 21: 3608–3619.

    Article  Google Scholar 

  • Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S.C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, V. Eyring, C. Forest, P. Gleckler, E. Guilyardi, C. Jakob, V. Kattsov, C. Reason, and M. Rummukainen. 2013. Evaluation of climate models. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. New York: Cambridge University Press, Cambridge, United Kingdom and New York.

    Google Scholar 

  • Gaitán, C.F. 2016. Effects of variance adjustment techniques and time-invariant transfer functions on heat wave duration indices and other metrics derived from downscaled time-series. Study case: Montreal, Canada. Natural Hazards 83: 1661–1681.

    Google Scholar 

  • Gaitán, C.F., and A.J. Cannon. 2013. Validation of historical and future statistically downscaled pseudo-observed surface wind speeds in terms of annual climate indices and daily variability. Renewable Energy 51: 489–496.

    Article  Google Scholar 

  • Gaitán, C.F., W.W. Hsieh, A.J. Cannon, and P. Gachon. 2014. Evaluation of linear and non-linear downscaling methods in terms of daily variability and climate indices: surface temperature in southern Ontario and Quebec, Canada. Atmosphere-Ocean 52: 211–221.

    Article  Google Scholar 

  • Gibson, J.R., and R.G. Najjar. 2000. The response of Chesapeake Bay salinity to climate-induced changes in streamflow. Limnology and Oceanography 45: 1764–1772.

    Article  CAS  Google Scholar 

  • Gillanders, B.M., T.S. Elsdon, I.A. Halliday, G.P. Jenkins, J.B. Robins, and F.J. Valesini. 2011. Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review. Marine and Freshwater Research 62: 1115–1131.

    Article  Google Scholar 

  • Gleick, P.H. and D.B. Adams. 2000. Water: the potential consequences of climate variability and change of the water resources of United States. The Report of the Water Sector Assessment Team of the National Assessment of the Potential Consequences of Climate Variability and Change for the U.S. Global Change Research Program. p 160.

  • Glibert, P.M., R. Magnien, M.W. Lomas, J. Alexander, C. Tan, E. Haramoto, M. Trice, and T.M. Kana. 2001. Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: comparison of 1997, 1998, and 1999 events. Estuaries 24: 875–883.

    Article  CAS  Google Scholar 

  • Grinsted, A., S. Jevrejeva, R.E. Riva, and D. Dahl-Jensen. 2015. Sea level rise projections for northern Europe under RCP8. 5. Climate Research 64: 15–23.

    Article  Google Scholar 

  • Guo, X., and A. Valle-Levinson. 2007. Tidal effects on estuarine circulation and outflow plume in the Chesapeake Bay. Continental Shelf Research 27: 20–42.

    Article  Google Scholar 

  • Hagy, J.D., W.R. Boynton, C.W. Keefe, and K.V. Wood. 2004. Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries 27: 634–658.

    Article  CAS  Google Scholar 

  • Hagy, J.D., W.R. Boynton, and D.A. Jasinski. 2005. Modelling phytoplankton deposition to Chesapeake Bay sediments during winter–spring: interannual variability in relation to river flow. Estuarine, Coastal and Shelf Science 62: 25–40.

    Article  CAS  Google Scholar 

  • Hales, L., Jr., and K. Able. 2001. Winter mortality, growth, and behavior of young-of-the-year of four coastal fishes in New Jersey (USA) waters. Marine Biology 139: 45–54.

    Article  Google Scholar 

  • Hare, J.A., and K.W. Able. 2007. Mechanistic links between climate and fisheries along the east coast of the United States: explaining population outbursts of Atlantic croaker (Micropogonias undulatus). Fisheries Oceanography 16: 31–45.

    Article  Google Scholar 

  • Hare, J.A., M.A. Alexander, M.J. Fogarty, E.H. Williams, and J.D. Scott. 2010. Forecasting the dynamics of a coastal fishery species using a coupled climate–population model. Ecological Applications 20(2): 452–464.

  • Hare, J.A., W.E. Morrison, M.W. Nelson, M.M. Stachura, E.J. Teeters, R.B. Griffis, M.A. Alexander, J.D. Scott, L. Alade, R.J. Bell, A.S. Chute, et al. 2016. A vulnerability assessment of fish and invertebrates to climate change on the Northeast US Continental Shelf. PloS One 11: e0146756. doi:10.1371/journal.pone.0146756.

    Article  CAS  Google Scholar 

  • Hawkins, E., and R. Sutton. 2011. The potential to narrow uncertainty in projections of regional precipitation change. Climate Dynamics 37: 407–418.

    Article  Google Scholar 

  • Hayhoe, K., C.P. Wake, T.G. Huntington, L. Luo, M.D. Schwartz, J. Sheffield, E. Wood, B. Anderson, J. Bradbury, A. DeGaetano, and T.J. Troy. 2007. Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics 28: 381–407.

    Article  Google Scholar 

  • Hellström, C., D. Chen, C. Achberger, and J. Räisänen. 2001. Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. Climate Research 19: 45–55.

    Article  Google Scholar 

  • Hessami, M., P. Gachon, T.B. Ouarda, and A. St-Hilaire. 2008. Automated regression-based statistical downscaling tool. Environmental Modelling and Software 23: 813–834.

    Article  Google Scholar 

  • Hilton, T.W., R.G. Najjar, L. Zhong, and M. Li. 2008. Is there a signal of sea-level rise in Chesapeake Bay salinity? Journal of Geophysical Research 113: C09002. doi:10.1029/2007JC004247.

    Article  CAS  Google Scholar 

  • Hines, A.H., E.G. Johnson, M.Z. Darnell, D. Rittschof, T.J. Miller, L.J. Bauer, P. Rodgers, and R. Aguilar. 2010. Predicting effects of climate change on blue crabs in Chesapeake Bay. In Biology and management of exploited crab populations under climate change, ed. G.H. Kruse, G.L. Eckert, R.J. Foy, R.N. Lipcius, B. Sainte-Marie, D.L. Stram, and D. Woodby. Fairbanks: Alaska Sea Grant, University of Alaska Fairbanks. doi:10.4027/bmecpcc.2010.22.

    Google Scholar 

  • Ho, C.K., D.B. Stephenson, M. Collins, C.A. Ferro, and S.J. Brown. 2012. Calibration strategies: a source of additional uncertainty in climate change projections. Bulletin of the American Meteorological Society 93: 21–26.

    Article  Google Scholar 

  • Hong, B., and J. Shen. 2012. Responses of estuarine salinity and transport processes to potential future sea-level rise in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 104: 33–45.

    Article  CAS  Google Scholar 

  • Howarth, R.W., A. Sharpley, and D. Walker. 2002. Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals. Estuaries 25: 656–676.

    Article  CAS  Google Scholar 

  • Irby, I.D., M.A.M. Friedrichs, C.T. Friedrichs, A.J. Bever, R.R. Hood, L.W.J. Lanerolle, M. Li, L. Linker, M.E. Scully, K. Sellner, J. Shen, J. Testa, H. Wang, P. Wang, and M. Xia. 2016. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison. Biogeosciences 13: 2011–2028.

    Article  CAS  Google Scholar 

  • Jacobs, J.M., M. Rhodes, C.W. Brown, R.R. Hood, A. Leight, W. Long, and R. Wood. 2014. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay. Journal of Applied Microbiology 117: 1312–1327.

    Article  CAS  Google Scholar 

  • Jacobs, J., S.K. Moore, K.E. Kunkel, and L. Sun. 2015. A framework for examining climate-driven changes to the seasonality and geographical range of coastal pathogens and harmful algae. Climate Risk Management 8: 16–27.

    Article  Google Scholar 

  • Jelks, H.L., S.J. Walsh, N.M. Burkhead, S. Contreras-Balderas, E. Diaz-Pardo, D.A. Hendrickson, J. Lyons, N.E. Mandrak, F. McCormick, J.S. Nelson, and S.P. Platania. 2008. Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33: 372–407.

    Article  Google Scholar 

  • Johnson, T.E., and C.P. Weaver. 2009. A framework for assessing climate change impacts on water and watershed systems. Environmental Management 43: 118–134.

    Article  Google Scholar 

  • Johnson, T.E., J.B. Butcher, A. Parker, and C.P. Weaver. 2012. Investigating the sensitivity of U.S. streamflow and water quality to climate change: U.S. EPA Global Change Research Program’s 20 watersheds project. Journal of Water Resources Planning and Management 138: 453–464.

    Article  Google Scholar 

  • Jung, S., and E.D. Houde. 2003. Spatial and temporal variabilities of pelagic fish community structure and distribution in Chesapeake Bay, USA. Estuarine, Coastal and Shelf Science 58: 335–351.

    Article  CAS  Google Scholar 

  • Kallache, M., M. Vrac, P. Naveau, and P.A. Michelangeli. 2011. Nonstationary probabilistic downscaling of extreme precipitation. Journal of Geophysical Research-Atmospheres 116. doi:10.1029/2010JD014892.

  • Kaneko, T., and R.R. Colwell. 1973. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. Journal of Bacteriology 113: 24–32.

    CAS  Google Scholar 

  • Kaneko, T., and R.R. Colwell. 1978. The annual cycle of Vibrio parahaemolyticus in Chesapeake Bay. Microbial Ecology 4: 135–155.

    Article  Google Scholar 

  • Kelly, M.T. 1982. Effect of temperature and salinity on Vibrio (Beneckea) vulnificus occurrence in a Gulf Coast environment. Applied and Environmental Microbiology 44: 820–824.

    CAS  Google Scholar 

  • Kemp, W.M., R. Batiuk, R. Bartleson, P. Bergstrom, V. Carter, C.L. Gallegos, W. Hunley, L. Karrh, E.W. Koch, J.M. Landwehr, K.A. Moore, L. Murray, M. Naylor, N.B. Rybicki, J.C. Stevenson, and D.J. Wilcox. 2004. Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: water quality, light regime and physical-chemical factors. Estuaries 27: 363–377.

    Article  CAS  Google Scholar 

  • Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, P.M. Glibert, J.D. Hagy, and L.W. Harding. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Kimmel, D.G., and M.R. Roman. 2004. Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: influence of freshwater input. Marine Ecology Progress Series 267: 71–83.

    Article  Google Scholar 

  • Kimmel, D.G., W.D. Miller, and M.R. Roman. 2006. Regional scale climate forcing of mesozooplankton dynamics in Chesapeake Bay. Estuaries and Coasts 29: 375–387.

    Article  Google Scholar 

  • Kuhn, M., S. Weston, C. Keefer and N. Coulter. 2015. Cubist: rule- and instance-based regression modeling. R package version 0.0.18. http://CRAN.R-project.org/package=Cubist

  • Langland, M.J., S.W. Phillips, J.P. Raffensperger and D.L. Moyer. 2004. Changes in streamflow and water quality in selected nontidal sites in the Chesapeake Bay Basin, 1985–2003. US Geological Survey Scientific Investigations Report 2004–5259, 50p.

  • Lankford, T.E., Jr., and T.E. Targett. 2001. Low-temperature tolerance of age-0 Atlantic croakers: recruitment implications for US mid-Atlantic estuaries. Transactions of the American Fisheries Society 130: 236–249.

    Article  Google Scholar 

  • Larsen, L.W., and E.L. Peck. 1974. Accuracy of precipitation measurements for hydrologic modeling. Water Resources Research 10: 857–863.

    Article  Google Scholar 

  • Lee, Y.J., W.R. Boynton, M. Li, and Y. Li. 2013. Role of late winter–spring wind influencing summer hypoxia in Chesapeake Bay. Estuaries and Coasts 36: 683–696.

    Article  CAS  Google Scholar 

  • Lee, M., E. Shevliakova, S. Malyshev, P.C.D. Milly, and P.R. Jaffé. 2016. Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk. Geophysical Research Letters 43. doi:10.1002/2016GL069254.

  • Letcher, B.H., D.J. Hocking, K. O’Neil, A.R. Whiteley, K.H. Nislow, and M.J. O’Donnell. 2016. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags. PeerJ 4: e1727. doi:10.7717/peerj.1727.

    Article  Google Scholar 

  • Li, H., J. Sheffield, and E.F. Wood. 2010. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. Journal of Geophysical Research-Atmospheres 115: D10101. doi:10.1029/2009JD012882.

    Article  Google Scholar 

  • Limburg, K.E., and J.R. Waldman. 2009. Dramatic declines in North Atlantic diadromous fishes. Bioscience 59: 955–965.

    Article  Google Scholar 

  • Lynch, P.D., J.A. Nye, J.A. Hare, C.A. Stock, M.A. Alexander, J.D. Scott, K.L. Curti, and K. Drew. 2014. Projected ocean warming creates a conservation challenge for river herring populations. ICES Journal of Marine Science 72: 374–387.

    Article  Google Scholar 

  • Malloy, K.D., and T.E. Targett. 1991. Feeding, growth and survival of juvenile summer flounder Paralichthys dentatus: experimental analysis of the effects of temperature and salinity. Marine Ecology Progress Series 72: 213–223.

    Article  Google Scholar 

  • Mandal, S., P.A. Breach, and S.P. Simonovic. 2016. Uncertainty in precipitation projection under changing climate conditions: a regional case study. American Journal of Climate Change 5: 116–132.

    Article  Google Scholar 

  • Martinez, M.L., A. Intralawan, G. Vazquez, O. Perez-Maqueo, P. Sutton, and R. Landgrave. 2007. The coasts of our world: ecological, economic and social importance. Ecological Economics 63: 254–272.

    Article  Google Scholar 

  • Maurer, E.P., and P.B. Duffy. 2005. Uncertainty in projections of streamflow changes due to climate change in California. Geophysical Research Letters 32. doi:10.1029/2004GL021462.

  • McCabe, G.J. and S.L. Markstrom. 2007. A monthly water-balance model driven by a graphical user interface: U.S. Geological Survey Open-File report 2007–1088, 6 p.

  • Michelangeli, P.A., M. Vrac, H. Loukos, and H. 2009. Probabilistic downscaling approaches: application to wind cumulative distribution functions. Geophysical Research Letters 36. doi:10.1029/2009GL038401.

  • Miles, D.W., T. Ross, J. Olley, and T.A. McMeekin. 1997. Development and evaluation of a predictive model for the effect of temperature and water activity on the growth rate of Vibrio parahaemolyticus. International Journal of Food Microbiology 38: 133–142.

    Article  CAS  Google Scholar 

  • Milly, P.C.D., and K.A. Dunne. 2011. On the hydrologic adjustment of climate-model projections: the potential pitfall of evapotranspiration. Earth Interactions 15. doi:10.1175/2010EI363.1.

  • Milly, P.C., K.A. Dunne, and A.V. Vecchia. 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438: 347–350.

    Article  CAS  Google Scholar 

  • Mohseni, O., H.G. Stefan, and J.G. Eaton. 2003. Global warming and potential changes in fish habitat in US streams. Climatic Change 59: 389–409.

    Article  CAS  Google Scholar 

  • Najjar, R.G. 1999. The water balance of the Susquehanna River Basin and its response to climate change. Journal of Hydrology 219: 7–19.

    Article  CAS  Google Scholar 

  • Najjar, R.G., C.R. Pyke, M.B. Adams, D. Breitburg, C. Hershner, M. Kemp, R. Howarth, M.R. Mulholland, M. Paolisso, D. Secor, and K. Sellner. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86: 1–20.

    Article  CAS  Google Scholar 

  • Niklitschek, E.J., and D.H. Secor. 2005. Modeling spatial and temporal variation of suitable nursery habitats for Atlantic sturgeon in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 64: 135–148.

    Article  Google Scholar 

  • Olla, B.L., R. Wicklund, and S. Wilk. 1969. Behavior of winter flounder in a natural habitat. Transactions of the American Fisheries Society 98: 717–720.

    Article  Google Scholar 

  • Overland, J.E., M. Wang, N.A. Bond, J.E. Walsh, V.M. Kattsov, and W.L. Chapman. 2011. Considerations in the selection of global climate models for regional climate projections: the Arctic as a case study. Journal of Climate 24: 1583–1597.

    Article  Google Scholar 

  • Paerl, H.W. 2006. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: interactive effects of human and climatic perturbations. Ecological Engineering 26: 40–54.

    Article  Google Scholar 

  • Paerl, H.W., and T.G. Otten. 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology 65: 995–1010.

    Article  CAS  Google Scholar 

  • Payne, M.R., M. Barange, W.W. Cheung, B.R. MacKenzie, H.P. Batchelder, X. Cormon, T.D. Eddy, J.A. Fernandez, A.B. Hollowed, M.C. Jones, and J.S. Link. 2016. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES Journal of Marine Science 73: 1272–1282.

    Article  Google Scholar 

  • Peer, A.C., and T.J. Miller. 2015. Climate change, migration phenology, and fisheries management interact with unanticipated consequences. North American Journal of Fisheries Management 34: 94–110.

    Article  Google Scholar 

  • Periera, J.J., R. Goldberg, J.J. Ziskowski, P.L. Berrien, W.W. Morse and D.L. Johnson. 1999. Winter flounder, Pseudopleuronectes americanus, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-138, 48p.

  • Pihl, L., A. Cattrijsse, I. Codling, S. Mathieson, D.S. McLusky, and C. Roberts. 2002. Habitat use by fishes in estuaries and other brackish areas. In Fishes in estuaries, ed. M. Elliott and K.L. Hemingway, 10–53. Hoboken: Blackwell Science.

    Chapter  Google Scholar 

  • Pilgrim, J.M., X. Fang, and H.G. Stefan. 1998. Stream temperature correlations with air temperatures in Minnesota: implications for climate warming. Journal of the American Water Resources Association 34: 1109–1121.

    Article  CAS  Google Scholar 

  • Preston, B.L. 2004. Observed winter warming of the Chesapeake Bay estuary (1949–2002): implications for ecosystem management. Environmental Management 34: 125–139.

    Article  Google Scholar 

  • Quinlan, J.R. 1992. Learning with continuous classes. 5th Australian Joint Conference on Artificial Intelligence 92: 343–348.

    Google Scholar 

  • Quinlan, J.R. 1993. Combining instance-based and model-based learning. Proceedings of the Tenth International Conference on Machine Learning pp. 236–243.

  • R Core Team. 2015. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing URL http://www.R-project.org/.

    Google Scholar 

  • Ralston, E.P., H. Kite-Powell, and A. Beet. 2011. An estimate of the cost of acute health effects from food-and water-borne marine pathogens and toxins in the USA. Journal of Water and Health 9: 680–694.

    Article  CAS  Google Scholar 

  • Reay, W.G., and K.A. Moore. 2009. Introduction to the Chesapeake Bay National Estuarine Research Reserve in Virginia. Journal of Coastal Research 57: 1–9.

    Article  Google Scholar 

  • Richards, R.A., and P.J. Rago. 1999. A case history of effective fishery management: Chesapeake Bay striped bass. North American Journal of Fisheries Management 19: 356–375.

    Article  Google Scholar 

  • Rome, M.S., A.C. Young-Williams, G.R. Davis, and A.H. Hines. 2005. Linking temperature and salinity tolerance to winter mortality of Chesapeake Bay blue crabs (Callinectes sapidus). Journal of Experimental Marine Biology and Ecology 319: 129–145.

    Article  Google Scholar 

  • Ross, A.C., R.G. Najjar, M. Li, M.E. Mann, S.E. Ford, and B. Katz. 2015. Sea-level rise and other influences on decadal-scale salinity variability in a coastal plain estuary. Estuarine, Coastal and Shelf Science 157: 79–92.

    Article  Google Scholar 

  • Rutherford, E.S., and E.D. Houde. 1995. The influence of temperature on cohort-specific growth, survival, and recruitment of striped bass, Morone saxatilis, larvae in Chesapeake Bay. Fishery Bulletin 93: 315–332.

    Google Scholar 

  • Scavia, D., J.C. Field, D.F. Boesch, R.W. Buddemeier, V. Burkett, D.R. Cayan, M. Fogarty, M.A. Harwell, R.W. Howarth, C. Mason, and D.J. Reed. 2002. Climate change impacts on US coastal and marine ecosystems. Estuaries 25: 149–164.

    Article  Google Scholar 

  • Schmith, T. 2008. Stationarity of regression relationships: application to empirical downscaling. Journal of Climate 21: 4529–4537.

    Article  Google Scholar 

  • Schneider, C., C.L.R. Laize, M.C. Acreman, and M. Flörke. 2013. How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences 17: 325–339.

    Article  Google Scholar 

  • Schubel, J.R., and D.W. Pritchard. 1986. Responses of upper Chesapeake Bay to variations in discharge of the Susquehanna River. Estuaries 9: 236–249.

    Article  CAS  Google Scholar 

  • Schulte, J.A., R.G. Najjar, and M. Li. 2016. The influence of climate modes on streamflow in the Mid-Atlantic region of the United States. Journal of Hydrology: Regional Studies 5: 80–99.

    Google Scholar 

  • Schwartz, F.J. 1964. Effects of winter water conditions on fifteen species of captive marine fishes. American Midland Naturalist 71: 434–444.

    Article  Google Scholar 

  • Scott, J.D., M.A. Alexander, D.R. Murray, D. Swales, and J. Eischeid. 2016. The climate change web portal: a system to access and display climate and earth system model output from the CMIP5 archive. Bulletin of the American Meteorological Society 97: 523–530.

    Article  Google Scholar 

  • Secor, D.H., and E.D. Houde. 1995. Temperature effects on the timing of striped bass egg production, larval viability, and recruitment potential in the Patuxent River (Chesapeake Bay). Estuaries 18: 527–544.

    Article  Google Scholar 

  • Sedas, V.T.P. 2007. Influence of environmental factors on the presence of Vibrio cholerae in the marine environment: a climate link. Journal of Infection in Developing Countries 1: 224–241.

    Google Scholar 

  • Sharov, A.F., J.H. Vølstad, G.R. Davis, B.K. Davis, R.N. Lipcius, and M.M. Montane. 2003. Abundance and exploitation rate of the blue crab (Callinectes sapidus) in Chesapeake Bay. Bulletin of Marine Science 72: 543–565.

    Google Scholar 

  • Sheffield, J., A.P. Barrett, B. Colle, D. Nelun Fernando, R. Fu, K.L. Geil, Q. Hu, J. Kinter, S. Kumar, B. Langenbrunner, and K. Lombardo. 2013. North American climate in CMIP5 experiments. Part I: evaluation of historical simulations of continental and regional climatology. Journal of Climate 26: 9209–9245.

    Article  Google Scholar 

  • Shen, J., and H.V. Wang. 2007. Determining the age of water and long-term transport timescale of the Chesapeake Bay. Estuarine, Coastal and Shelf Science 74: 585–598.

    Article  Google Scholar 

  • Solomantine, D.P., and K.N. Dulal. 2003. Model trees as an alternative to neural networks in rainfall—runoff modelling. Hydrological Sciences Journal 48: 399–411.

    Article  Google Scholar 

  • Sprague, L.A., M.J. Langland, S.E. Yochum, R.E. Edwards, J.D. Blomquist, S.W. Phillips, G.W. Shenk and S.D. Preston. 2000. Factors affecting nutrient trends in major rivers of the Chesapeake Bay watershed (No. 2000–4218). US Geological Survey Water Resources Investigation Report 2000–4218, 109 p.

  • SRBC (2013) State of the Susquehanna: 2013 Report. Susquehanna River Basin Commission, 20pp.

  • Stock, C.A., M.A. Alexander, N.A. Bond, K.M. Brander, W.W. Cheung, E.N. Curchitser, T.L. Delworth, J.P. Dunne, S.M. Griffies, M.A. Haltuch, and J.A. Hare. 2011. On the use of IPCC-class models to assess the impact of climate on living marine resources. Progress in Oceanography 88: 1–27.

    Article  Google Scholar 

  • Tango, P.J., R. Magnien, W. Butler, C. Luckett, M. Luckenbach, R. Lacouture, and C. Poukish. 2005. Impacts and potential effects due to Prorocentrum minimum blooms in Chesapeake Bay. Harmful Algae 4: 525–531.

    Article  Google Scholar 

  • Testa, J.M., Y. Li, Y.J. Lee, M. Li, D.C. Brady, D.M. Di Toro, W.M. Kemp, and J.J. Fitzpatrick. 2014. Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic-biogeochemical model. Journal of Marine Systems 139: 139–158.

    Article  Google Scholar 

  • Thompson, J.R., A. Crawley, and D.G. Kingston. 2015. GCM-related uncertainty for river flows and inundation under climate change: the Inner Niger Delta. Hydrological Sciences Journal. doi:10.1080/02626667.2015.1117173.

  • Tisseuil, C., M. Vrac, G. Grenouillet, A.J. Wade, M. Gevrey, T. Oberdorff, J.-B. Grodwohl, and S. Lek. 2012. Strengthening the link between climate, hydrological and species distribution modeling to assess the impacts of climate change on freshwater biodiversity. Science of the Total Environment 424: 193–201.

    Article  CAS  Google Scholar 

  • Tommasi, D., J. Nye, C. Stock, J.A. Hare, M. Alexander, and K. Drew. 2015. Effect of environmental conditions on juvenile recruitment of alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis) in fresh water: a coastwide perspective. Canadian Journal of Fisheries and Aquatic Sciences 72: 1037–1047.

    Article  Google Scholar 

  • Valle-Levinson, A., K.C. Wong, and K.T. Bosley. 2001. Observations of the wind-induced exchange at the entrance to Chesapeake Bay. Journal of Marine Research 59: 391–416.

    Article  Google Scholar 

  • Vicuna, S., and J.A. Dracup. 2007. The evolution of climate change impact studies on hydrology and water resources in California. Climatic Change 82: 327–350.

    Article  Google Scholar 

  • Viganò, G., G. Confortola, R. Fornaroli, R. Cabrini, S. Canobbio, V. Mezzanotte, and D. Bocchiola. 2015. Effects of future climate change on a river habitat in an Italian alpine catchment. Journal of Hydrologic Engineering 21. doi:10.1061/(ASCE)HE.1943-5584.0001293,04015063.

  • Vörösmarty, C.J., C.A. Federer, and A.L. Schloss. 1998. Potential evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. Journal of Hydrology 207: 147–169.

    Article  Google Scholar 

  • Vrac, M. and P.A. Michelangeli. 2009. Package ‘CDFt’. R package version 1.0.1 https://cran.r-project.org/web/packages/CDFt/CDFt.pdf.

  • Wagner, R.W., M. Stacey, L.R. Brown, and M. Dettinger. 2011. Statistical models of temperature in the Sacramento–San Joaquin Delta under climate-change scenarios and ecological implications. Estuaries and Coasts 34: 544–556.

    Article  Google Scholar 

  • Wilber, D.H., D.G. Clarke, C.M. Alcoba, and J. Gallo. 2016. Windowpane flounder (Scophthalmus aquosus) and winter flounder (Pseudopleuronectes americanus) responses to cold temperature extremes in a Northwest Atlantic estuary. Journal of Sea Research 107: 23–30.

    Article  Google Scholar 

  • Wilby, R.L., and I. Harris. 2006. A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resources Research 42: W02419. doi:10.1029/2005WR004065.

    Article  Google Scholar 

  • Wilby, R.L., and T.M.L. Wigley. 1997. Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geology 21: 530–548.

    Article  Google Scholar 

  • Wilby, R.L., C.W. Dawson, and E.M. Barrow. 2002. SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling and Software 17: 145–157.

    Article  Google Scholar 

  • Wilby, R.L., O.J. Tomlinson, and C.W. Dawson. 2003. Multi-site simulation of precipitation by conditional resampling. Climate Research 23: 183–194.

    Article  Google Scholar 

  • Wood, R.J., D.F. Boesch, and V.S. Kennedy. 2002. Future consequences of climate change for the Chesapeake Bay ecosystem and its fisheries. American Fisheries Society Symposium 32: 171–184.

    Google Scholar 

  • Wood, A.W., L.R. Leung, V. Sridhar, and D.P. Lettenmaier. 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change 62: 189–216.

    Article  Google Scholar 

  • Xu, Z., and Z.L. Yang. 2012. An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. Journal of Climate 25: 6271–6286.

    Article  Google Scholar 

  • Xu, J., W. Long, J.D. Wiggert, L.W. Lanerolle, C.W. Brown, R. Murtugudde, and R.R. Hood. 2012. Climate forcing and salinity variability in Chesapeake Bay, USA. Estuaries and Coasts 35: 237–261.

    Article  CAS  Google Scholar 

  • Zeng, Z., W.W. Hsieh, A. Shabbar, and W.R. Burrows. 2011. Seasonal prediction of winter extreme precipitation over Canada by support vector regression. Hydrology and Earth System Sciences 15: 65–74.

    Article  Google Scholar 

  • Zorita, E., and H. Von Storch. 1999. The analog method as a simple statistical downscaling technique: comparison with more complicated methods. Journal of Climate 12: 2474–2489.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge T. Miller (University of Maryland) and M. Fabrizio, R. Latour, D. Kaplan, C. Meynard, and D. Gauthier (Virginia Institute of Marine Science) for the provision of observational data in the Chesapeake Bay. H. Townsend, T. Ihde, B. Kinlan, M. Monaco, and J. Manderson contributed valuable advice and discussion on data and analyses. J. Lanzante advised on the implementation of quantile mapping methods. The manuscript was significantly improved by review from A. Muñoz, M. Lee, and two anonymous reviewers. GCMs were assessed using output from the NOAA ESRL climate change portal (J. Scott and M. Alexander). CTD data were obtained from the Chesapeake Bay Program’s water quality database, with help from M. Mallonee. Air temperature observations were obtained from the NOAA National Centers for Environmental Information and Thomas Point observations from the NOAA National Data Buoy Center. CPC US Unified Precipitation data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. Funding and support for this study were provided by the NOAA National Ocean Service (NOS) National Centers for Coastal Ocean Science (NCCOS), the NOAA National Marine Fisheries Service (NMFS) Office of Science & Technology, the NOAA Integrated Ecosystem Assessment (IEA) Program, and the NOAA office of Oceanic and Atmospheric Research (OAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Muhling.

Additional information

Communicated by Arnoldo Valle-Levinson

Electronic Supplementary Materials

ESM 1

Figure S1 Projected changes in surface temperature in the Chesapeake Bay during winter, spring, and fall: 1970-1999 versus 2071-2100. The two models with the strongest (top row) and weakest (bottom row) change between the two time periods are shown for each season. (TIFF 6505 kb)

ESM 2

Figure S2 Projected changes in surface salinity in the Chesapeake Bay during spring, summer, and fall: 1970-1999 versus 2071-2100. The two models with the highest (top row) and lowest (bottom row) change between the two time periods are shown for each season. (TIFF 5843 kb)

ESM 3

Figure S3 Mean 2m air temperature in the Susquehanna River watershed 2001-2100, from the four statistical downscaling methods applied to the WW model, averaged across seasons (top), and months (bottom). The difference between mean temperatures in August between the coolest (BCQM) and warmest (CFQM) methods is also shown. (TIFF 453 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muhling, B.A., Gaitán, C.F., Stock, C.A. et al. Potential Salinity and Temperature Futures for the Chesapeake Bay Using a Statistical Downscaling Spatial Disaggregation Framework. Estuaries and Coasts 41, 349–372 (2018). https://doi.org/10.1007/s12237-017-0280-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0280-8

Keywords

  • Chesapeake Bay
  • Statistical downscaling
  • Spatial disaggregation
  • Climate change