Estuaries and Coasts

, Volume 41, Issue 1, pp 206–217 | Cite as

The Importance of Environmental and Spatial Factors in the Metacommunity Dynamics of Exposed Sandy Beach Benthic Invertebrates

  • Iván F. RodilEmail author
  • P. Lucena-Moya
  • M. Lastra


We studied the contribution of environmental and spatial factors in determining the metacommunity dynamics of benthic macroinvertebrates in ocean-exposed sandy beaches. A combination of different metacommunity models contributed to the structure of the benthic species, suggesting that the interplay of environmental and spatial factors played a key role in determining the beach community structure. Our study highlights the sensitivity of beach invertebrates to environmental factors such as morphodynamic descriptors, and to oceanographic-related variables (e.g., sea-water temperature). The results also suggest significant spatial signals at a large geographical scale. We applied two different species categorizations, high dispersive vs low dispersive and generalist vs specialist, to disentangle the roles of dispersal mode and habitat specialization in the beach metacommunity structure. The strength of the environmental and spatial factors varied depending on the category of species traits considered, emphasizing the value of using different groups of species in explaining variation in metacommunity dynamics. Low dispersive species showed a better ability to track environmental variability than high dispersive species, which were more spatially constrained. Habitat specialists were better able to track environmental variability than generalists, which were mainly predicted by pure spatial factors. A better understanding of the metacommunity dynamics using different species categorizations can help to improve our predictions about exposed beach community structure, and to prioritize management actions to cope with biodiversity loss in such superlative marine environment.


Dispersal mode Environmental filtering Habitat specialization Macroinvertebrates Spatial structuring Variation partitioning 



We thank two anonymous reviewers for their useful suggestions and constructive comments. This study was supported by Xunta de Galicia (Project PGIDIT02RMA30101PR). IFR is supported by strategic research funding for collaboration between the two universities of Helsinki and Stockholm.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12237_2017_263_MOESM1_ESM.docx (269 kb)
ESM 1 (DOCX 269 kb)


  1. Borcard, D., and P. Legendre. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.CrossRefGoogle Scholar
  2. Borcard, D., F. Gillet, and L. Legendre. 2011. Numerical Ecology with R. New York: Springer.CrossRefGoogle Scholar
  3. Cisneros, K.O., A.J. Smit, J. Laudien, and D. Schoeman. 2011. Complex, dynamic combination of physical, chemical and nutritional variables controls spatiotemporal variation of sandy beach community structure. PloS One 6 (8): e23724. doi: 10.1371/journal.pone.0023724.CrossRefGoogle Scholar
  4. Contreras, H., and E. Jaramillo. 2003. Geographical variation in natural history of the sandy beach isopod Excirolana hirsuticauda Menzies (Cirolanidae) on the Chilean coast. Estuarine, Coastal and Shelf Science 58S: 117–126.CrossRefGoogle Scholar
  5. Cottenie, K. 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.CrossRefGoogle Scholar
  6. Cottenie, K., E. Michels, N. Nuytten, and L. De Meester. 2003. Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology 84: 991–1000.CrossRefGoogle Scholar
  7. Defeo, O., and A. McLachlan. 2005. Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Marine Ecology Progress Series 295: 1–20.CrossRefGoogle Scholar
  8. Defeo, O., A. McLachlan, D.S. Schoeman, T.A. Schlacher, J. Dugan, A. Jones, M. Lastra, and F. Scapini. 2009. Threats to sandy beach ecosystems: a review. Estuarine, Coastal and Shelf Science 81: 1–12.CrossRefGoogle Scholar
  9. de la Huz, R., M. Lastra, and J. López. 2002. The influence of sediment grain size on burrowing, growth and metabolism of Donax trunculus L. (Bivalvia: Donacidae). Journal of Sea Research 47: 85–95.Google Scholar
  10. Dray, S., P. Legendre, and P.R. Peres-Neto. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196: 483–493.CrossRefGoogle Scholar
  11. Dugan, J.E., O. Defeo, E. Jaramillo, A.R. Jones, M. Lastra, et al. 2010. Give beach ecosystems their day in the sun. Science 329 (5996): 1146.CrossRefGoogle Scholar
  12. Ellis, A.M., L.P. Lounibos, and M. Holyoak. 2006. Evaluating the long-term metacommunity dynamics of tree hole mosquitoes. Ecology 87 (10): 2582–2590.CrossRefGoogle Scholar
  13. Emery, K.O. 1961. A simple method of measuring beach profiles. Limnology and Oceanography 6: 90–93.CrossRefGoogle Scholar
  14. Fanini, L., and J. Lowry. 2014. Coastal talitrids and connectivity between beaches: A behavioural test. Journal of Experimental Marine Biology and Ecology 457: 120–127.CrossRefGoogle Scholar
  15. Funk, A., F. Schiemer, and W. Reckendorfer. 2013. Metacommunity structure of aquatic gastropods in a river floodplain: the role of niche breadth and drift propensity. Freshwater Biology 58: 2505–2516.CrossRefGoogle Scholar
  16. Grantham, B.A., G.L. Eckert, and A.L. Shanks. 2003. Dispersal potential of marine invertebrates in diverse habitats. Ecological Applications 13: S108–S116.CrossRefGoogle Scholar
  17. Grönroos, M., J. Heino, T. Siqueira, V.L. Landeiro, J. Kotanen, and L.M. Bini. 2013. Metacommunity structuring in stream networks: roles of dispersal mode, distance type and regional environmental context. Ecology and Evolution 3: 4473–4487.CrossRefGoogle Scholar
  18. Heino, J. 2013. Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates. Ecology and Evolution 3: 344–355.CrossRefGoogle Scholar
  19. Heino, J., A.S. Melo, T. Siqueira, J. Soninen, S. Valanko, and L.M. Bini. 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.CrossRefGoogle Scholar
  20. Jaramillo, E., and A. McLachlan. 1993. Community and population response of the macroinfauna to physical factors over a range of exposed sandy beaches in South-central Chile. Estuarine, Coastal and Shelf Science 37: 615–624.CrossRefGoogle Scholar
  21. Jaramillo, E., H. Contreras, C. Duarte, and P. Quijón. 2001. Relationships between community structure of the intertidal macroinfauna and sandy beach characteristics along the Chilean coast. Marine Ecology 22 (4): 323–342.CrossRefGoogle Scholar
  22. Jiménez-Alfaro, B., C. Marceno, R. Guarino, and M. Chytry. 2015. Regional metacommunities in two coastal systems: spatial structure and drivers of plant assemblages. Journal of Biogeography. 42: 452–462Google Scholar
  23. Jones, D.A., and E. Naylor. 1970. The swimming rhythm of the sand beach isopod Eurydice pulchra. Journal of Experimental Marine Biology and Ecology 4: 188–199.CrossRefGoogle Scholar
  24. Josefson, A.B., and C. Göke. 2013. Disentangling the effects of dispersal and salinity on beta diversity in estuarine benthic invertebrate assemblages. Journal of Biogeography 40: 1000–1009.CrossRefGoogle Scholar
  25. Lastra, M., R. De la Huz, A.G. Sánchez-Mata, I.R. Rodil, K. Aerts, S. Beloso, and J. López. 2006. Ecology of exposed sandy beaches in northern Spain: environmental factors controlling macrofauna communities. Journal of Sea Research 55: 128–140.CrossRefGoogle Scholar
  26. Lastra, M., T.A. Schlacher, and C. Olabarria. 2010. Niche segregation in sandy beach animals: an analysis with surface-active peracarid crustaceans on the Atlantic coast of Spain. Marine Biology 157: 613–625.CrossRefGoogle Scholar
  27. Leibold, M.A., M. Holyoak, N. Mouquet, P. Amarasekare, J.M. Chase, M.F. Hoopes, R.D. Holt, J.B. Shurin, R. Law, D. Tilman, M. Loreau, and A. Gonzalez. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  28. Levins, R. 1968. Evolution in changing environments. Princeton: Princeton University Press.Google Scholar
  29. Logue, J.B., N. Mouquet, H. Peter, and H. Hillebrand. 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology & Evolution. 26(9): 482–491Google Scholar
  30. McLachlan, A., and A.C. Brown. 2006. The Ecology of Sandy Shores. second ed, 373. Burlington: Academic press.Google Scholar
  31. McLachlan, A., E. Jaramillo, E. Donn, and F. Wessels. 1993. Sandy beach macrofauna communities and their control by the physical environment: a geographical comparison. Journal of Coastal Research 15: 27–38.Google Scholar
  32. Moritz, C., C.N. Meynard, V. Devictor, K. Guizien, C. Labrune, J.-M. Guarini, and N. Mouquet. 2013. Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics. Oikos 122: 1401–1410.Google Scholar
  33. Ng, I.S.Y., C. Carr, and K. Cottenie. 2009. Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619: 133–143.CrossRefGoogle Scholar
  34. Norkko, A., V.J. Cumming, S.F. Thrush, J.E. Hewitt, and T. Hume. 2001. Local dispersal of juvenile bivalves: implications for sandflat ecology. Marine Ecology Progress Series. 212: 131–144.Google Scholar
  35. van Noordwijk, C.G.E., W.C.E.P. Verberk, H. Turin, T. Heijerman, K. Alders, W. Dekoninck, et al. 2015. Species–area relationships are modulated by trophic rank, habitat affinity, and dispersal ability. Ecology 96 (2): 518–531.CrossRefGoogle Scholar
  36. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, et al. 2016 Vegan: community ecology package. R package version 2.0–9.Google Scholar
  37. Padial, A.A., F. Ceschin, S.A.J. Declerck, L. De Meester, C.C. Bonecker, F.A. Lansac-Tôha, L. Rodrigues, L.C. Rodrigues, S. Train, L.F.M. Velho, L.M. Bini. 2014. Dispersal Ability Determines the Role of Environmental, Spatial and Temporal Drivers of Metacommunity Structure. PLoS ONE 9(10): e111227. doi: 10.1371/journal.pone.0111227.
  38. Pandit, S.N., J. Kolasa, and K. Cottenie. 2009. Contrasts between habitat generalists and specialists-an empirical extension to the basic metacommunity framework. Ecology 90: 2253–2262.CrossRefGoogle Scholar
  39. Pavesi, L., A. Deidun, E. De Matthaeis, R. Tiedemann, and V. Ketmaier. 2012. Mitochondrial DNA and microsatellites reveal significant divergence in the beachflea Orchestia montagui (Talitridae: Amphipoda). Aquatic Sciences 74: 587–596.CrossRefGoogle Scholar
  40. Peres-Neto, P.R., P. Legendre, S. Dray, and D. Borcard. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.CrossRefGoogle Scholar
  41. Pilditch, C.A., S. Valanko, J. Norkko, and A. Norkko. 2015. Post-settlement dispersal: the neglected link in maintenance of soft-sediment biodiversity. Biology Letters. 11:20140795.Google Scholar
  42. R Development Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing Scholar
  43. Rádková, V., J. Bojková, V. Křoupalová, J. Schenková, V. Syrovátka, and M. Horsák. 2014. The role of dispersal mode and habitat specialization in metacommunity structuring of aquatic macroinvertebrates in isolated spring fens. Freshwater Biology 59: 2256–2267.CrossRefGoogle Scholar
  44. Rodil, I.F., and M. Lastra. 2004. Environmental factors affecting benthic macrofauna along a gradient of intermediate sandy beaches in northern Spain. Estuarine, Coastal and Shelf Science 61: 37–44.CrossRefGoogle Scholar
  45. Rodil, I.F., T.J. Compton, and M. Lastra. 2012. Exploring macroinvertebrate species distributions at regional and local scales across a sandy beach geographic continuum. PloS One 7 (6): e39609.CrossRefGoogle Scholar
  46. Rodil, I.F., P. Lucena-Moya, H. Jokinen, V. Ollus, H. Wennhage, A. Villnäs, and A. Norkko. 2017. The role of dispersal mode and habitat specialization for metacommunity structure of shallow beach invertebrates. PloS One 12 (2): e0172160. doi: 10.1371/journal.pone.0172160.CrossRefGoogle Scholar
  47. Schlacher, T.A., and L. Thompson. 2013. Environmental control of community organisation on ocean-exposed sandy beaches. Marine and Freshwater Research 64: 119–129.CrossRefGoogle Scholar
  48. Schlacher, T., J.E. Dugan, D.S. Schoeman, M. Lastra, A. Jones, F. Scapini, A. McLachlan, and O. Defeo. 2007. Sandy beaches at the brink. Diversity and Distribution 13: 556–560.CrossRefGoogle Scholar
  49. Shanks, A.L. 2009. Pelagic Larval Duration and Dispersal Distance Revisited. Biological Bulletin. 216: 373–385.CrossRefGoogle Scholar
  50. Siegel, D.A., S. Mitarai, C.J. Costello, S.D. Gaines, B.E. Kendall, R.R. Warner, and K.B. Winters. 2008. The stochastic nature of larval connectivity among nearshore marine populations. Proceedings of the National Academy of Sciences of the United States of America 26: 8974–8979.CrossRefGoogle Scholar
  51. Tyberghein, L., H. Verbruggen, K. Pauly, C. Troupin, and F. Mineur. 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21 (2): 272–281.CrossRefGoogle Scholar
  52. Valanko, S., J. Heino, M. Westerborm, M. Viitasalo, and A. Norkko. 2015. Complex metacommunity structure for benthic invertebrates in a low-diversity coastal system. Ecology and Evolution 5: 5203–5215.CrossRefGoogle Scholar
  53. Vanschoenwinkel, B., C. De Vries, M. Seaman, and L. Brendonck. 2007. The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos 116: 1255–1266.CrossRefGoogle Scholar
  54. Wilson, W.H. 1991. Sexual reproductive modes in polychaetes: classification and diversity. Bulletin of Marine Science 48 (2): 500–516.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2017

Authors and Affiliations

  1. 1.Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
  2. 2.Baltic Sea CentreStockholm UniversityStockholmSweden
  3. 3.Department of Ecology and Animal BiologyUniversity of VigoVigoSpain

Personalised recommendations