Skip to main content

Advertisement

Log in

Phosphorus Sequestration in Sediments Along the Salinity Gradients of Chesapeake Bay Subestuaries

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We used a sequential extraction technique to compare the forms and amounts of particulate phosphorus (PP) deposited in the top meter of sediment spanning salinities from 0 to 10 in three Chesapeake Bay subestuaries: the Potomac, Choptank, and Bush Rivers. Fe-bound P (i.e., citrate-bicarbonate-dithionite (CDB)-extractable P) was the most dynamic fraction of PP, dominating oligohaline (salinity <3) sediments, but declining to near zero with depth in the most saline sediments of all three subestuaries. In contrast, we previously found Fe-P dominating the sediment PP at salinities ranging 0–11 in the Patuxent subestuary. Particulate organic P was relatively constant with depth and salinity and became the dominant form of PP in the most saline sediments. Fe-P was not replaced with diagenetic authigenic carbonate fluorapatite. In all the subestuaries, Fe-P generally persisted in the oligohaline sediments to 1 m depth, where sediment ages ranged from 60 to 200 years, based on 210Pb dating. At one site, PP burial reflected changing P loads from a nearby wastewater treatment plant. About 67% of the PP discharged from the Potomac watershed at the head of tide was buried in the sediments in the upper reaches of that subestuary. The form and amount of PP buried depended on the amount of CDB-extractable Fe in the sediments and on the distribution of sediment deposition along the salinity gradient. Even though CDB targets iron oxides, the predominant form of Fe in the sediments was ferrous iron suggesting that the predominant form of PP in oligohaline sediments may be ferrous phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aller, R.C., J.E. Mackin, and R.T. Cox Jr. 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Continental Shelf Research 6: 263–289.

    Article  CAS  Google Scholar 

  • Allison, J. D., D. S. Brown, and K. J. Novo-Gradac. 1991. MINTEQA2, a geochemical assessment model for environmental systems: Version 3.0 User’s Manual. Report EPA/600/3-91/-21. Environmental Research Laboratory, Office of Research and Development, U.S, pp 106. Athens: Environmental Protection Agency.

  • Anschutz, P., S. Zhong, B. Sundby, A. Mucci, and C. Gobeil. 1998. Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments. Limnology and Oceanography 43: 53–64.

    Article  CAS  Google Scholar 

  • Boynton, W.R., and W.M. Kemp. 1985. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient. Marine Ecology Progress Series 23: 45–55.

    Article  CAS  Google Scholar 

  • Boynton, W.R., J.H. Garber, R. Summers, and W.M. Kemp. 1995. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18: 285–314.

    Article  CAS  Google Scholar 

  • Brush, G.S., E.A. Martin, R.S. DeFries, and C.A. Rice. 1982. Comparisons of 210Pb and pollen methods for determining rates of estuarine sediment accumulation. Quaternary Research 18: 196–217.

    Article  Google Scholar 

  • Burns, S.J. 1997. Early diagenesis in Amazon fan sediments. In Proceedings of the Ocean Drilling Program, Scientific Results, ed. R.D. Flood, D.J.W. Piper, A. Klaus, and L.C. Peterson, 497–504. College Station, TX: Ocean Drilling Program.

    Google Scholar 

  • Callendar, E. 1982. Benthic phosphorus regeneration in the Potomac River Estuary. Hydrobiologia 92: 431–446.

    Article  Google Scholar 

  • Canfield, D. E. 1988. Sulfate reduction and the diagenesis of iron in anoxic sediments. Ph.D. Thesis. Yale University, New Haven.

  • Caraco, N.F., J.J. Cole, and G.E. Likens. 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318.

    Article  CAS  Google Scholar 

  • Caraco, N.F., J.J. Cole, and G.E. Likens. 1990. A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9: 227–290.

    Article  Google Scholar 

  • Carignan, R., and R.J. Flett. 1981. Post-depositional mobility of phosphorus in lake sediments. Limnology and Oceanography 26: 361–366.

    Article  CAS  Google Scholar 

  • Carpenter, S.R., N.F. Caraco, D.L. Correll, R.W. Howarth, A.N. Sharpley, and V.H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Cha, H.J., C.B. Lee, B.S. Kim, M.S. Choi, and K.C. Ruttenberg. 2005. Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern East Sea (Japan Sea). Marine Geology 216: 127–143.

    Article  CAS  Google Scholar 

  • Chao, T.T., and L. Zhuo. 1983. Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Science Society of America Journal 47: 225–232.

    Article  CAS  Google Scholar 

  • Chambers, R.M., and W.E. Odum. 1990. Porewater oxidation, dissolved phosphate and the iron curtain: iron-phosphorus relations in tidal freshwater marshes. Biogeochemistry 10: 37–52.

    Article  CAS  Google Scholar 

  • Cornwell, J.C., D.J. Conley, M. Owens, and J.C. Stevenson. 1996. A sediment chronology of the eutrophication of Chesapeake Bay. Estuaries 19: 488–499.

    Article  CAS  Google Scholar 

  • Cronin, W. B., and D. W. Pritchard 1975. Additional statistics on the dimensions of the Chesapeake Bay and its tributaries: cross-section widths and segment volumes per meter depth. Special Report 42. Chesapeake Bay Institute, Johns Hopkins University. Reference 75–3. Baltimore, Maryland.

  • Dijkstra, N., P. Kraal, M.M.M. Kuypers, B. Schnetger, and C.P. Slomp. 2014. Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments? PloS One 9 (7): e101139. doi:10.1371/journal.pone.0101139.

    Article  Google Scholar 

  • Eaton, A.D., L.S. Clesceri, and A.E. Greenberg. 1995. Standard methods for the examination of water and wastewater. Washington DC: American Public Health Association.

    Google Scholar 

  • Egger, M., T. Jilbert, T. Behrends, C. Rivard, and C.P. Slomp. 2015. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochimica et Cosmochmica Acta 169: 217–235.

    Article  CAS  Google Scholar 

  • Föllmi, K.B. 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Science Reviews 40: 55–124.

    Article  Google Scholar 

  • Froelich, P.N. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnology and Oceanography 33: 649–668.

    CAS  Google Scholar 

  • Gächter, R., and B. Müller. 2003. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnology and Oceanography 48: 929–933.

    Article  Google Scholar 

  • Hartzell, J.L., T.E. Jordan, and J.C. Cornwell. 2010. Phosphorus burial in sediments along the salinity gradient of the Patuxent River, a subestuary of the Chesapeake Bay (USA). Estuaries and Coasts 33: 92–106.

    Article  CAS  Google Scholar 

  • Hartzell, J.L., and T.E. Jordan. 2012. Shifts in the relative availability of phosphorus and nitrogen along an estuarine salinity gradient. Biogeochemistry 107: 489–500.

    Article  CAS  Google Scholar 

  • Homer, C., C. Huang, L. Yang, B. Wylie, and M. Coan. 2004. Development of a 2001 national land-cover database for the United States. Photogrammetric Engineering and Remote Sensing 70: 829–840.

    Article  Google Scholar 

  • House, W.A. 2003. Geochemical cycling of phosphorus in rivers. Appied Geochemistry 18: 739–748.

    Article  CAS  Google Scholar 

  • Hupfer, M., S. Gloss, P. Schmieder, and H.-P. Grossart. 2008. Methods for detection and quantification of polyphosphate and polyphosphate accumulating microorganisms in aquatic sediments. International Review of Hydrobiology 93: 1–30.

    Article  CAS  Google Scholar 

  • Hyacinthe, C., and P. Van Cappellen. 2004. An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity. Marine Chemistry 91: 227–251.

    Article  CAS  Google Scholar 

  • Jensen, H.S., P.B. Mortensen, F.O. Andersen, and A. Jensen. 1995. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnology and Oceanography 36: 908–917.

    Article  Google Scholar 

  • Jensen, H.S., and B. Thamdrup. 1993. Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253: 47–59.

    Article  CAS  Google Scholar 

  • Jilbert, T., and C.P. Slomp. 2013. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea. Geochimica et Cosmochimica Acta 107: 155–169.

    Article  CAS  Google Scholar 

  • Jones, R. C. and D. P. Kelso. 2005. An ecological study of Gunston Cove 2003-2005, pp 174. County of Fairfax: Final Report to the Department of Public Works.

  • Jordan, T.E., J.C. Cornwell, W.R. Boynton, and J.T. Anderson. 2008. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: the iron conveyer belt. Limnology and Oceanography 53: 172–184.

    Article  CAS  Google Scholar 

  • Jordan, T.E., D.L. Correll, and D.E. Weller. 1997. Relating nutrient discharges from watersheds to land use and streamflow variability. Water Resources Research 33: 2579–2590.

    Article  CAS  Google Scholar 

  • Joshi, S.R., R.K. Kukkadapu, D.J. Burdige, M.E. Bowden, D.L. Sparks, and D.P. Jaisi. 2015. Organic matter remineralization predominates phosphorus cycling in the mid-Bay sediments in the Chesapeake Bay. Environmental Science & Technology 49: 5887–5896.

    Article  CAS  Google Scholar 

  • Kostka, J.E., and G.W. Luther. 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica et Cosmochimica Acta 58: 1701–1710.

    Article  CAS  Google Scholar 

  • Kraal, M.D., C.P. Slomp, A. Forster, M.M.M. Kuypers, and A. Sluijs. 2009. Pyrite oxidation during sample storage determines phosphorus fractionation in carbonate-poor anoxic sediments. Geochimica et Cosmochimica Acta 45: 207–216.

    Google Scholar 

  • Krom, M.D., and R.A. Berner. 1980. Adsorption of phosphate in anoxic marine sediments. Limnology and Oceanography 25: 797–806.

    Article  CAS  Google Scholar 

  • Langland, M. J., P. L. Lietman, S. Hoffman. 1995. Synthesis of nutrient and sediment data for watersheds within the Chesapeake Bay drainage basin. U.S. Geological Survey, pp 122. Lemoyne: Water-Resources Investigations Report 95-4233.

  • Larsen, O., and D. Postma. 2001. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochimica et Cosmochimica Acta 65: 1367–1379.

    Article  CAS  Google Scholar 

  • Lebo, M.E. 1991. Particle-bound phosphorus along an urbanized coastal plain estuary. Marine Chemistry 34: 225–246.

    Article  CAS  Google Scholar 

  • Lebo, M.E., and J.H. Sharp. 1993. Distribution of phosphorus along the Delaware, an urbanized coastal plain estuary. Estuaries 16: 290–301.

    Article  CAS  Google Scholar 

  • Lehtoranta, J., P. Ekholm, and H. Pitkanen. 2009. Coastal eutrophication thresholds: a matter of sediment microbial processes. Ambio 38: 303–308.

    Article  CAS  Google Scholar 

  • Li, W., S.R. Joshi, G. Hou, D.J. Burdige, D.L. Sparks, and D.P. Jaisi. 2015. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, P-31 NMR, and X-ray absorption fine structure spectroscopy. Environmental Science & Technology 49: 203–211.

    Article  CAS  Google Scholar 

  • Louchouarn, P., M. Lucotte, E. Duchemin, and A.d. Vernal. 1997. Early diagenetic processes in recent sediments of the Gulf of St-Lawrence: phosphorus, carbon and iron burial rates. Marine Geology 139: 181–200.

    Article  CAS  Google Scholar 

  • Martens, C.S., R.A. Berner, and J.K. Rosenfield. 1978. Interstitial water chemistry of anoxic Long Island Sound sediments. 2. Nutrient regeneration and phosphate removal. Limnology and Oceanography 23: 605–617.

    Article  Google Scholar 

  • Maryland Department of Natural Resources. 1998. 3rd order (12-Digit) Watersheds. Annapolis.

  • National Hydrography Dataset Plus (NHDPlus). 2009. NHDPlus user guide. ftp://ftp.horizon-systems.com/NHDPlus/documentation/NHDPlus_UserGuide.pdf.

  • Nembrini, G.P., J.A. Capobianco, M. Viel, and A.E. Williams. 1983. A Mössbauer and chemical study of the formation of vivianite in sediments of Lago Maggiore (Italy). Geochimica et Cosmochimica Acta 47: 1459–1464.

    Article  CAS  Google Scholar 

  • Nixon, S.W. 1995. Coastal marine eutrophication: a definition, social causes, and future consequences. Ophelia 41: 199–219.

    Article  Google Scholar 

  • O’Keefe, J. A. 2007. Sediment biogeochemistry across the Patuxent River estuarine gradient: Geochronology and Fe-S-P interactions. MS Thesis. College Park: University of Maryland.

  • Paludan, C., and J.T. Morris. 1999. Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry 45: 197–221.

    Google Scholar 

  • Postma, D. 1982. Pyrite and siderite formation in brackish and freshwater swamp sediments. American Journal of Science 282: 1151–1183.

    Article  CAS  Google Scholar 

  • Raiswell, R., D.E. Canfield, and R.A. Berner. 1994. A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron-limited pyrite formation. Chemical Geology 111: 101–110.

    Article  CAS  Google Scholar 

  • Rozan, T.F., M. Taillefert, R.E. Trouwborst, B.T. Glazer, S. Ma, J. Herszage, L.M. Valdes, K.S. Price, and G.W. Luther III. 2002. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography 47: 1346–1354.

    Article  CAS  Google Scholar 

  • Ruttenberg, K.C. 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography 37: 1460–1482.

    Article  CAS  Google Scholar 

  • Ruttenberg, K.C., and R.A. Berner. 1993. Authigenic apatite formation and burial in sediments from non-upwelling continental margin environments. Geochimica et Cosmochimica Acta 57: 991–1007.

    Article  CAS  Google Scholar 

  • Ruttenberg, K.C. 2003. The global phosphorus cycle. In Treatise on geochemistry, eds. K.K. Turekian and D.J. Holland, 585–643. New York: Elsevier.

  • Slomp, C.P., E.H.G. Epping, W. Helder, and W.V. Raaphorst. 1996a. A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. Journal of Marine Research 54: 1179–1205.

    Article  CAS  Google Scholar 

  • Slomp, C.P., S.J.V.d. Gaast, and W.V. Raaphorst. 1996b. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Marine Chemistry 52: 55–73.

    Article  CAS  Google Scholar 

  • Slomp, C.P., H.P. Mort, T. Jilbert, D.C. Reed, and B.G. Gustafsson. 2013. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PloS One 8 (4): e62386. doi:10.1371/journal.pone.0062386.

    Article  CAS  Google Scholar 

  • Stookey, L.L. 1970. Ferrozine: a new spectrophotometric reagent for iron. Analytical Chemistry 42: 779–781.

    Article  CAS  Google Scholar 

  • Sundareshwar, P.V., and J.T. Morris. 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnology and Oceanography 44: 1693–1701.

    Article  CAS  Google Scholar 

  • Sundby, B., C. Gobeil, N. Silverberg, and A. Mucci. 1992. The phosphorus cycle in coastal marine sediments. Limnology and Oceanography 37: 1129–1145.

    Article  CAS  Google Scholar 

  • Tyrrell, T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400: 525–531.

    Article  CAS  Google Scholar 

  • U.S. Geological Survey. 2013. Water quality loads and trends at nontidal monitoring in the Chesapeake Bay watershed. Accessed June 10, 2013, at URL http://cbrim.er.usgs.gov/loads_query.html.

  • U.S. Geological Survey. 1999. Monitoring nutrients in the major rivers draining to the Chesapeake Bay. Water-Resources Investigations Report 99–4238.

  • Van der Zee, C., C.P. Slomp, D.G. Rancourt, G.J. de Lange, and W. van Raaphorst. 2005. A Mössbauer spectroscopic study of the iron redox transition in eastern Mediterranean sediments. Geochimica et Cosmochimica Acta 69: 441–453.

    Article  CAS  Google Scholar 

  • Virtasalo, J.J., T. Kohonen, I. Vuorinen, and T. Huttula. 2005. Sea bottom anoxia in the Archipelago Sea, northern Baltic Sea—implications for phosphorus remineralization at the sediment surface. Marine Geology 224: 103–122.

    Article  CAS  Google Scholar 

  • Williams, J.D.H., T. Mayer, and J.O. Nriagu. 1980. Extractability of phosphorus from phosphate minerals common in soils and sediments. Soil Science Society of America Journal 44: 462–465.

    Article  CAS  Google Scholar 

  • Williams, J.D.H., J.K. Syers, S.S. Shukla, R.F. Harris, and D.E. Armstrong. 1971. Levels of inorganic and total phosphorus in lake sediments as related to other sediment paramenters. Environmental Science and Technology 5: 1113–1120.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the National Science Foundation grant DEB-0235884 and the United States Environmental Protection Agency (EPA) Science to Achieve Results (STAR) Graduate Fellowship Program. Technical assistance was provided by Nancy Goff, Joseph Miklas, Marc Sigrist, Kim Cone, Jackie Nygeun, Quan Dhin, and Mike Owens. Gregory Foster provided laboratory space and technical guidance. The suggestions of Donald Kelso and two anonymous reviewers improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Jordan.

Additional information

Communicated by Zhanfei Liu

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartzell, J.L., Jordan, T.E. & Cornwell, J.C. Phosphorus Sequestration in Sediments Along the Salinity Gradients of Chesapeake Bay Subestuaries. Estuaries and Coasts 40, 1607–1625 (2017). https://doi.org/10.1007/s12237-017-0233-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0233-2

Keywords

Navigation