Estuaries and Coasts

, Volume 40, Issue 5, pp 1502–1515 | Cite as

Changes in Habitat Availability for Multiple Life Stages of Diamondback Terrapins (Malaclemys terrapin) in Chesapeake Bay in Response to Sea Level Rise

  • Ryan J. Woodland
  • Christopher L. Rowe
  • Paula F. P. Henry


Global sea level rise (SLR) will significantly alter coastal landscapes through inundation and erosion of low-lying areas. Animals that display area fidelity and rely on fringing coastal habitats during multiple life stages, such as diamondback terrapins (Malaclemys terrapin Schoepff 1793), are likely to be particularly vulnerable to SLR-induced changes. We used a combination of empirical nest survey data and results from a regional SLR model to explore the long-term availability of known nesting locations and the modeled availability of fringing coastal habitats under multiple SLR scenarios for diamondback terrapin in the MD portion of Chesapeake Bay and the MD coastal bays. All SLR scenarios projected the rapid inundation of historically used nesting locations of diamondback terrapins with 25%–55% loss within the next 10 years and over 80% loss by the end of the century. Model trajectories of habitat losses or gains depended on habitat type and location. A key foraging habitat, brackish marsh, was projected to decline 6%–94%, with projections varying spatially and among scenarios. Despite predicted losses of extant beach habitats, future gains in beach habitat due to erosion and overwash were projected to reach 40%–600%. These results demonstrate the potential vulnerability of diamondback terrapins to SLR in Chesapeake Bay and underscore the possibility of compounding negative effects of SLR on animals whose habitat requirements differ among life stages. More broadly, this study highlights the vulnerability of species dependent on fringing coastal habitats and emphasizes the need for a long-term perspective for coastal development in the face of SLR.


Turtle Estuary Global change Disturbance Conservation SLAMM 

Supplementary material

12237_2017_209_MOESM1_ESM.docx (42 kb)
ESM 1(DOCX 42 kb)


  1. Basile, E.R., H.W. Avery, W.F. Bien, and J.M. Keller. 2011. Diamondback terrapins as indicator species of persistent organic pollutants: using Barnegat Bay, New Jersey as a case study. Chemosphere 82: 137–144.CrossRefGoogle Scholar
  2. Baxter, A.S. 2015. Identifying diamondback terrapin nesting habitat in the Nueces Estuary, Texas, 23. CBBEP Office, Corpus Christi, TX: Coastal Bend Bays and Estuaries Program.Google Scholar
  3. Boesch, D.F., L.P. Atkinson, W.C. Boicourt, J.D. Boon, D.R. Cahoon, R.W. Dalrymple, T. Ezer, B.P. Horton, Z.P. Johnson, R.E. Kopp, M. Li, R.H. Moss, A. Parris, and C.K. Sommerfield. 2013. Updating Maryland’s sea-level rise projections. In Special Report of the Scientific and Technical Working Group to the Maryland Climate Change Commission, 22 pp. University of Maryland Center for Environment Science, Cambridge, MD: University of Maryland Center for Environmental Science.Google Scholar
  4. Brennessel, B. 2006. Diamonds in the marsh: a natural history of the diamondback terrapin. Lebanon: University Press of New England.Google Scholar
  5. Burger, J. 1977. Determinants of hatching success in diamondback terrapin, Malaclemys terrapin. American Midland Naturalist 97: 444–464.CrossRefGoogle Scholar
  6. Burger, J., and W.A. Montevecchi. 1975. Nest site selection in the terrapin Malaclemys terrapin. Copeia 113–119.Google Scholar
  7. Cahoon, D.R., P.F. Hensel, T. Spencer, D.J. Reed, K.L. McKee, and N. Saintilan. 2006. Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. In Wetlands and natural resource management, ed. J.T.A. Verhoeven, B. Beltman, R. Bobbink and D.F. Whigham, 271–292. Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar
  8. Clough, J.S., and R.A. Park. 2007. Technical documentation for SLAMM 5.0. Warren Pinnacle Consulting, Inc, Eco Modeling.Google Scholar
  9. Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo, and M. Machmuller. 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7: 73–78.CrossRefGoogle Scholar
  10. Cushman, S.A. 2006. Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biological Conservation 128: 231–240.CrossRefGoogle Scholar
  11. Daniels, R.C., T.W. White, and K.K. Chapman. 1993. Sea-level rise: destruction of threatened and endangered species habitat in South Carolina. Environmental Management 17: 373–385.CrossRefGoogle Scholar
  12. Dewey, D.I., and J.P. Lewandowski. 2012. Spatial patterns of road mortality: assessing turtle barrier conservation strategies. Middle States Geographer 45: 40–47.Google Scholar
  13. Draud, M., M. Bossert, and S. Zimnavoda. 2004. Predation on hatchling and juvenile diamondback terrapins (Malaclemys terrapin) by the Norway rat (Rattus norvegicus). Journal of Herpetology 38: 467–470.CrossRefGoogle Scholar
  14. Erazmus, K.R. 2012. Diet and prey choice of female diamond-backed terrapins (Malaclemys terrapin) in Jamaica Bay. New York: Hofstra University Hempstead.Google Scholar
  15. Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics 34: 487–515.CrossRefGoogle Scholar
  16. Feinberg, J.A. 2004. Nest predation and ecology of terrapin, Malaclemys terrapin, at the Jamaica Bay wildlife refuge. In Conservation and ecology of turtles of the mid-Atlantic region: a symposium, ed. C. Swarth, W.M. Roosenburg, and E. Kiviat, 5–12. Salt Lakes City, Utah: Bibliomania.Google Scholar
  17. Feinberg, J.A., and R.L. Burke. 2003. Nesting ecology and predation of diamondback terrapins, Malaclemys terrapin, at Gateway National Recreation Area, New York. Journal of Herpetology 37: 517–526.CrossRefGoogle Scholar
  18. Fry, J., G. Xian, S. Jin, J. Dewitz, C. Homer, L. Yang, C. Barnes, N. Herold, and J. Wickham. 2011. Completion of the 2006 National Land Cover Database for the conterminous United States. Photogrammetric Engineering and Remote Sensing 77: 858–864.Google Scholar
  19. Gibbons, J.W., J.E. Lovich, A.D. Tucker, N.N. Fitzsimmons, and J.L. Greene. 2001. Demographic and ecological factors affecting conservation and management of the diamondback terrapin (Malaclemys terrapin) in South Carolina. Chelonian Conservation and Biology 4: 66–74.Google Scholar
  20. Gibbons, J.W., D.E. Scott, T.J. Ryan, K.A. Buhlmann, T.D. Tuberville, B.S. Metts, J.L. Greene, T. Mills, Y. Leiden, S. Poppy, and C.T. Winne. 2000. The global decline of reptiles, Deja Vu amphibians. Bioscience 50: 653–666.CrossRefGoogle Scholar
  21. Glick, P., J. Clough, and B. Nunley. 2008. Sea-level rise and coastal habitats in the Chesapeake Bay region, 121: National Wildlife Federation.Google Scholar
  22. IPCC 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. ed. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson, 881. Cambridge University Press: Cambridge, New YorkGoogle Scholar
  23. IPCC. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In , ed. R.K. Pachauri and L.A. Meyer, 151. Geneva: IPCC.Google Scholar
  24. Isdell, R.E., R.M. Chambers, D.M. Bilkovic, and M. Leu. 2015. Effects of terrestrial-aquatic connectivity on an estuarine turtle. Diversity and Distributions 21: 643–653.CrossRefGoogle Scholar
  25. Iwamura, T., H.P. Possingham, I. Chadès, C. Minton, N.J. Murray, D.I. Rogers, E.A. Treml, and R.A. Fuller. 2013. Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proceedings of the Royal Society of London B: Biological Sciences 280. doi:10.1098/rspb.2013.0325.
  26. Kappel, C.V. 2005. Losing pieces of the puzzle: threats to marine, estuarine, and diadromous species. Frontiers in Ecology and the Environment 3: 275–282.CrossRefGoogle Scholar
  27. Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37.Google Scholar
  28. Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Fagherazzi. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6: 253–260.CrossRefGoogle Scholar
  29. Lentz, E.E., E.R. Thieler, N.G. Plant, S.R. Stippa, R.M. Horton, and D.B. Gesch. 2016. Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. Nature Climate Change 6: 696–700.Google Scholar
  30. Lovich, J.E., A.D. Tucker, D.E. Kling, and J.W. Gibbons. 1991. Behavior of hatchling diamondback terrapins Malaclemys terrapin released in a South Carolina USA salt marsh. Herpetological Review 22: 81–83.Google Scholar
  31. Mengel, M., A. Levermann, K. Frieler, A. Robinson, B. Marzeion, and R. Winkelmann. 2016. Future sea level rise constrained by observations and long-term commitment. Proceedings of the National Academy of Sciences 113: 2597–2602.CrossRefGoogle Scholar
  32. Mitchell, J.C., and S.C. Walls. 2013. Nest site selection by diamond-backed terrapins (Malaclemys terrapin) on a mid-Atlantic barrier island. Chelonian Conservation and Biology 12: 303–308.CrossRefGoogle Scholar
  33. Muldoon, K.A., and R.L. Burke. 2012. Movements, overwintering, and mortality of hatchling diamond-backed terrapins (Malaclemys terrapin) at Jamaica Bay, New York. Canadian Journal of Zoology-Revue Canadienne De Zoologie 90: 651–662.CrossRefGoogle Scholar
  34. Nicholls, R.J., and A. Cazenave. 2010. Sea-level rise and its impact on coastal zones. Science 328: 1517–1520.CrossRefGoogle Scholar
  35. Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. Bioscience 56: 987–996.CrossRefGoogle Scholar
  36. Palmer, W.M., and C.L. Cordes. 1998. Habitat suitability index models: diamondback terrapin (nesting)–Atlantic Coast. Washington DC: Fish and Wildlife Service, National Wetlands Research Center.Google Scholar
  37. Pfau, B., and W.M. Roosenburg. 2010. Diamondback terrapins in Maryland: research and conservation. Radiata 19: 2–34.Google Scholar
  38. Pitler, R. 1985. Natural history notes: Malaclemys terrapin terrapin (Northern diamondback terrapin). Behavior. Herpetological Review 16: 82.Google Scholar
  39. Poloczanska, E.S., C.J. Limpus, and G.C. Hays. 2009. Vulnerability of marine turtles to climate change. In Advances in marine biology, 151–211: Academic Press.Google Scholar
  40. Raposa, K.B., R.L.J. Weber, M.C. Ekberg, and W. Ferguson. 2015. Vegetation dynamics in Rhode Island salt marshes during a period of accelerating sea level rise and extreme sea level events. Estuaries and Coasts 1–11.Google Scholar
  41. Roosenburg, W.M. 1991. The diamondback terrapin: habitat requirements, population dynamics, and opportunities for conservation. In New perspectives in the Chesapeake System: a research and management partnership, 227–239. Baltimore, MD: Chesapeake Research Consortium Publication No. 137.Google Scholar
  42. Roosenburg, W.M. 1994. Nesting habitat requirements of the diamondback terrapin: a geographic comparison. Wetlands Journal 6: 9–12.Google Scholar
  43. Roosenburg, W.M., K.L. Haley, and S. McGuire. 1999. Habitat selection and movements of diamondback terrapins, Malaclemys terrapin, in a Maryland estuary. Chelonian Conservation and Biology 3: 425–429.Google Scholar
  44. Roosenburg, W.M., D.M. Spontak, S.P. Sullivan, E.L. Matthews, M.L. Heckman, R.J. Trimbath, R.P. Dunn, E.A. Dustman, L. Smith, and L.J. Graham. 2014. Nesting habitat creation enhances recruitment in a predator-free environment: Malaclemys nesting at the Paul S. Sarbanes Ecosystem Restoration Project. Restoration Ecology 22: 815–823.CrossRefGoogle Scholar
  45. Sheridan, C.M., J.R. Spotila, W.F. Bien, and H.W. Avery. 2010. Sex-biased dispersal and natal philopatry in the diamondback terrapin, Malaclemys terrapin. Molecular Ecology 19: 5497–5510.CrossRefGoogle Scholar
  46. Silliman, B.R., and M.D. Bertness. 2002. A trophic cascade regulates salt marsh primary production. Proceedings of the National Academy of Sciences of the United States of America 99: 10500–10505.CrossRefGoogle Scholar
  47. Spivey, P.B. 1998. Home range, habitat selection, and diet of the diamondback terrapin (Malaclemys terrapin) in a North Carolina estuary. GA: The University of Georgia Athens.Google Scholar
  48. Tucker, A.D., N.N. Fitzsimmons, and J.W. Gibbons. 1995. Resource partitioning by the estuarine turtle Malaclemys terrapin: trophic, spatial, and temporal foraging constraints. Herpetologica 51: 167–181.Google Scholar
  49. Tulipani, D.C., and R.N. Lipcius. 2014. Evidence of eelgrass (Zostera marina) seed dispersal by northern diamondback terrapin (Malaclemys terrapin terrapin) in lower Chesapeake Bay. PloS One 9: e103346.CrossRefGoogle Scholar
  50. Whitelaw, D.M., and R.N. Zajac. 2002. Assessment of prey availability for diamondback terrapins in a Connecticut salt marsh. Northeastern Naturalist 9: 407–418.CrossRefGoogle Scholar
  51. Wood, R.C., and R. Herlands. 1997. Turtles and tires: the impact of roadkills on northern diamondback terrapin, Malaclemys terrapin terrapin, populations on the Cape May Peninsula, southern New Jersey, USA. In Conservation, Restoration, and Management of Tortoises and Turtles–An International Conference, 46–53. The New York Turtle and Tortoise Society.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2017

Authors and Affiliations

  • Ryan J. Woodland
    • 1
  • Christopher L. Rowe
    • 1
  • Paula F. P. Henry
    • 2
  1. 1.University of Maryland Center for Environmental ScienceChesapeake Biological LaboratorySolomonsUSA
  2. 2.US Geological Survey, Patuxent Wildlife Research CenterBeltsvilleUSA

Personalised recommendations