Iron and Pyritization in Wetland Soils of the Florida Coastal Everglades

Abstract

We explored environmental factors influencing soil pyrite formation within different wetland regions of Everglades National Park. Within the Shark River Slough (SRS) region, soils had higher organic matter (62.65 ± 1.88 %) and lower bulk density (0.19 ± 0.01 g cm−3) than soils within Taylor Slough (TS; 14.35 ± 0.82 % and 0.45 ± 0.01 g cm−3, respectively), Panhandle (Ph; 15.82 ± 1.37 % and 0.34 ± 0.009 g cm−3, respectively), and Florida Bay (FB; 5.63 ± 0.19 % and 0.73 ± 0.02 g cm−3, respectively) regions. Total reactive sulfide and extractable iron (Fe) generally were greatest in soils from the SRS region, and the degree of pyritization (DOP) was higher in soils from both SRS (0.62 ± 0.02) and FB (0.52 ± 0.03) regions relative to TS and Ph regions (0.30 ± 0.02 and 0.31 ± 0.02, respectively). Each region, however, had different potential limits to pyrite formation, with SRS being Fe and sulfide limited and FB being Fe and organic matter limited. Due to the calcium-rich soils of TS and Ph regions, DOP was relatively suppressed. Annual water flow volume was positively correlated with soil DOP. Soil DOP also varied in relation to distance from water management features and soil percent organic matter. We demonstrate the potential use of soil DOP as a proxy for soil oxidation state, thereby facilitating comparisons of wetland soils under different flooding regimes, e.g., spatially or between wet years versus dry years. Despite its low total abundance, Fe plays an important role in sulfur dynamics and other biogeochemical cycles that characterize wetland soils of the Florida coastal Everglades.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aiken, George R., Cynthia C. Gilmour, David P. Krabbenhoft, and William Orem. 2011. Dissolved organic matter in the Florida Everglades: implications for ecosystem restoration. Critical Reviews in Environmental Science and Technology 41: 217–248. doi:10.1080/10643389.2010.530934.

    CAS  Article  Google Scholar 

  2. Alongi, Daniel M. 2010. Dissolved iron supply limits early growth of estuarine mangroves. Ecology 91: 3229–3241.

    Article  Google Scholar 

  3. Bae, H., F.E. Dierberg, and A. Ogram. 2014. Syntrophs dominate sequences associated with the mercury-methylating gene hgcA in the water conservation areas of the Florida Everglades. Applied and Environmental Microbiology: AEM.01666–14. doi:10.1128/AEM.01666-14.

    Google Scholar 

  4. Bazante, Jose, Gary Jacobi, Helena M. Solo-Gabriele, David Reed, Sherry Mitchell-Bruker, Daniel L. Childers, Lynn Leonard, and Michael Ross. 2006. Hydrologic measurements and implications for tree island formation within Everglades National Park. Journal of Hydrology 329: 606–619. doi:10.1016/j.jhydrol.2006.03.011.

    Article  Google Scholar 

  5. Berner, Robert A. 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48: 605–615. doi:10.1016/0016-7037(84)90089-9.

    CAS  Article  Google Scholar 

  6. Blodau, C., C.L. Roehim, and T.R. Moore. 2002. Iron, sulfur, and dissolved carbon dynamics in a northern peatland. Archiv für Hydrobiologie 154: 561–583.

    CAS  Article  Google Scholar 

  7. Borum, J., O. Pedersen, T.M. Greve, T.A. Frankovich, J.C. Zieman, J.W. Fourqurean, and C.J. Madden. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93: 148–158. doi:10.1111/j.1365-2745.2004.00943.x.

    CAS  Article  Google Scholar 

  8. Bosence, Daniel. 1989. Biogenic carbonate production in Florida Bay. Bulletin of Marine Science 44: 419–433.

    Google Scholar 

  9. Bowles, Karl C., Russell A. Bell, Michael J. Ernste, James R. Kramer, Helen Manolopoulos, and Nancy Ogden. 2002. Synthesis and characterization of metal sulfide clusters for toxicological studies. Environmental Toxicology and Chemistry 21: 693–699

    CAS  Article  Google Scholar 

  10. Burton, Edward D., Richard T. Bush, Scott G. Johnston, Leigh A. Sullivan, and Annabelle F. Keene. 2011. Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland. Geochimica et Cosmochimica Acta 75: 3434–3451. doi:10.1016/j.gca.2011.03.020.

    CAS  Article  Google Scholar 

  11. Canfield, Donald E. 1989. Reactive iron in marine sediments. Geochimica et Cosmochimica Acta 53: 619–632. doi:10.1016/0016-7037(89)90005-7.

    CAS  Article  Google Scholar 

  12. Canfield, Donald E., Robert Raiswell, and Simon H. Bottrell. 1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science 292: 659–683. doi:10.2475/ajs.292.9.659.

    CAS  Article  Google Scholar 

  13. Carlson, Jr, R. Paul, Laura A. Yarbro, and Timothy R. Barber. 1994. Relationship of sediment sulfide to mortality of Thalassia testudinum in Florida Bay. Bulletin of Marine Science 54: 733–746.

    Google Scholar 

  14. Chambers, R.M., and K.A. Pederson. 2006. Variation in soil phosphorus, sulfur, and iron pools among South Florida wetlands. Hydrobiologia 569: 63–70. doi:10.1007/s10750-006-0122-3.

    CAS  Article  Google Scholar 

  15. Chambers, R.M., and T.M. Russell. 2016. Physical and chemical characteristics of soil sediments from the Shark River slough and Taylor slough, Everglades National Park (FCE) from August 2004 to present, Grant No. DEB-1237517, DBI-0620409, and Grant No. DEB-9910514. Miami, FL: Florida Coastal Everglades Long-Term Ecological Research Program.

    Google Scholar 

  16. Chambers, R.M., J.W. Fourqurean, S.A. Macko, and et al. 2001. Biogeochemical effects of iron availability on primary producers in a shallow marine carbonate environment. Limnology and Oceanography 46:1278–1286

  17. Childers, Daniel L., Joseph N. Boyer, Stephen E. Davis, Christopher J. Madden, David T. Rudnick, and Fred H. Sklar. 2006. Relating precipitation and water management to nutrient concentrations in the oligotrophic“ upside-down” estuaries of the Florida Everglades. Limnology and Oceanography 51: 602–616.

    CAS  Article  Google Scholar 

  18. Cline, J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14: 454–458.

    CAS  Article  Google Scholar 

  19. Compeau, G.C., and R. Bartha. 1985. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology 50: 498–502.

    CAS  Google Scholar 

  20. Cook, A. 2012. Development of an integrated surface and subsurface model of Everglades National Park.

  21. Corstanje, R., and K.R. Reddy. 2004. Response of biogeochemical indicators to a drawdown and subsequent reflood. Journal of Environmental Quality 33: 2357–2366.

    CAS  Article  Google Scholar 

  22. Dierberg, F.E., T.A. DeBusk, M Jerauld, and B Gu. 2014. Appendix 3B-1: Evaluation of factors influencing methylmercury accumulation in South Florida marshes. In 2014 South Florida Environmental Report. West Palm Beach, FL: South Florida Water Management District.

  23. Fortin, Danielle, and Sean Langley. 2005. Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews 72: 1–19. doi:10.1016/j.earscirev.2005.03.002.

    CAS  Article  Google Scholar 

  24. Friese, K., K. Wendt-Potthoff, D.W. Zachmann, A. Fauville, B. Mayer, and J. Veizer. 1998. Biogeochemistry of iron and sulfur in sediments of an acidic mining Lake in Lusatia, Germany. Water, Air, and Soil Pollution 108: 231–247. doi:10.1023/A:1005195617195.

    CAS  Article  Google Scholar 

  25. Giblin, Anne E. 1988. Pyrite formation in marshes during early diagenesis. Geomicrobiology Journal 6: 77–97. doi:10.1080/01490458809377827.

    CAS  Article  Google Scholar 

  26. Giblin, Anne E., and Robert W. Howarth. 1984. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnology and Oceanography 29: 47–63. doi:10.4319/lo.1984.29.1.0047.

    CAS  Article  Google Scholar 

  27. Gilmour, C.C., and E.A. Henry. 1991. Mercury methylation in aquatic systems affected by acid deposition. Environmental Pollution 71: 131–169.

    CAS  Article  Google Scholar 

  28. Gilmour, C.C., E.A. Henry, and R. Mitchell. 1992. Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science & Technology 26: 2281–2287.

    CAS  Article  Google Scholar 

  29. Gilmour, C.C., M. Podar, A.L. Bullock, A.M. Graham, S.D. Brown, A.C. Somenahally, A. Johs, R.A. Hurt, K.L. Bailey, and D.A. Elias. 2013. Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology 47: 11810–11820. doi:10.1021/es403075t.

    CAS  Article  Google Scholar 

  30. Giraudoux, P. 2016. pgirmess: data analysis in ecology. R (version 1.6.4).

  31. Hammes, F., and W. Verstraete. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology 1: 3–7. doi:10.1023/A:1015135629155.

    CAS  Article  Google Scholar 

  32. Harrison, A.F., and K.L. Bocock. 1981. Estimation of soil bulk-density from loss-on-ignition values. The Journal of Applied Ecology 18: 919. doi:10.2307/2402382.

    Article  Google Scholar 

  33. Julian, P. 2013. Mercury hotspot identification in water conservation area 3, Florida, USA. Annals of GIS 19: 79–88. doi:10.1080/19475683.2013.782469.

    Article  Google Scholar 

  34. Julian, P, G.G. Payne, and S.K. Xue. 2014. Chapter 3A: water quality in the Everglades Protection Areas. In 2014 South Florida environmental report. West Palm Beach, FL: South Florida Water Management District.

  35. Julian, P, G.G. Payne, and S.K. Xue. 2015. Chapter 3A: water quality in the Everglades Protection Areas. In 2015 South Florida environmental report. West Palm Beach, FL: South Florida Water Management District.

  36. Julian, P., A.L. Wright, and T.Z. Osborne. 2016. Iron and sulfur porewater and surface water biogeochemical interactions in a subtropical peatland. Soil Science Society of America Journal 80: 794–802. doi:10.2136/sssaj2015.11.0418.

    CAS  Article  Google Scholar 

  37. Keene, Annabelle F., Scott G. Johnston, Richard T. Bush, Leigh A. Sullivan, Edward D. Burton, Angus E. McElnea, Colin R. Ahern, and Bernard Powell. 2010. Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland. Biogeochemistry 103: 263–279. doi:10.1007/s10533-010-9461-2.

    Article  Google Scholar 

  38. Koch, M.S., I.A. Mendelssohn, and K.L. Mckee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35: 399–408. doi:10.4319/lo.1990.35.2.0399.

    CAS  Article  Google Scholar 

  39. Koch, M.S., R.E. Benz, and D.T. Rudnick. 2001. Solid-phase phosphorus pools in highly organic carbonate sediments of northeastern Florida Bay. Estuarine, Coastal and Shelf Science 52: 279–291. doi:10.1006/ecss.2000.0751.

    CAS  Article  Google Scholar 

  40. Kotun, Kevin, and Amy Renshaw. 2014. Taylor slough hydrology: fifty years of water management 1961-2010. Wetlands 34: 9–22. doi:10.1007/s13157-013-0441-x.

    Article  Google Scholar 

  41. Landing, W.M., J.J. Perry Jr., J.L. Guentzel, G.A. Gill, and C.D. Pollman. 1995. Relationships between the atmospheric deposition of trace elements, major ions, and mercury in Florida: the FAMS project (1992–1993). Water, Air, and Soil Pollution 80: 343–352. doi:10.1007/BF01189684.

    CAS  Article  Google Scholar 

  42. Luther, W. George, and Thomas M. Church. 1988. Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh. Marine Chemistry 23: 295–309. doi:10.1016/0304-4203(88)90100-4.

  43. Marschner, Horst. 2011. Mineral nutrition of higher plants. New York: Academic Press.

    Google Scholar 

  44. McCormick, Paul, Susan Newman, and Les Vilchek. 2009. Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA. Hydrobiologia 621: 105–114. doi:10.1007/s10750-008-9635-2.

    CAS  Article  Google Scholar 

  45. Morris, James T., Donald C. Barber, John C. Callaway, Randy Chambers, Scott C. Hagen, Charles S. Hopkinson, Beverly J. Johnson, et al. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state: sediment bulk density and ignition loss. Earth’s Future 4: 110–121. doi:10.1002/2015EF000334.

    Article  Google Scholar 

  46. Orem, William, Cynthia Gilmour, Donald Axelrad, David Krabbenhoft, Daniel Scheidt, Peter Kalla, Paul McCormick, Mark Gabriel, and George Aiken. 2011. Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration. Critical Reviews in Environmental Science and Technology 41: 249–288. doi:10.1080/10643389.2010.531201.

    CAS  Article  Google Scholar 

  47. Osborne, T.Z., and L.R. Ellis. 2015. Monitoring of phosphorus storage in Park Marsh Land Sediments: an assessment of the C-111 Spreader Canal Project. Report to National Park Service, Everglades National Park

  48. Osborne, T.Z., G.L. Bruland, S. Newman, K.R. Reddy, and S. Grunwald. 2011. Spatial distributions and eco-partitioning of soil biogeochemical properties in the Everglades National Park. Environmental Monitoring and Assessment 183: 395–408. doi:10.1007/s10661-011-1928-7.

    CAS  Article  Google Scholar 

  49. Osborne, T.Z., K.R. Reddy, L.R. Ellis, N.G. Aumen, D.D. Surratt, M.S. Zimmerman, and J. Sadle. 2014. Evidence of recent phosphorus enrichment in surface soils of Taylor Slough and Northeast Everglades National Park. Wetlands 34: 37–45. doi:10.1007/s13157-013-0381-5.

    Article  Google Scholar 

  50. Pallud, Céline, and Philippe Van Cappellen. 2006. Kinetics of microbial sulfate reduction in estuarine sediments. Geochimica et Cosmochimica Acta 70: 1148–1162. doi:10.1016/j.gca.2005.11.002.

    CAS  Article  Google Scholar 

  51. Parks, Jerry M., Alexander Johs, Mircea Podar, Romain Bridou, Richard A. Hurt, Steven D. Smith, Stephen J. Tomanicek, et al. 2013. The genetic basis for bacterial mercury methylation. Science 339: 1332–1335. doi:10.1126/science.1230667.

    CAS  Article  Google Scholar 

  52. Peña, Edsel A., and Elizabeth H. Slate. 2006. Global validation of linear model assumptions. Journal of the American Statistical Association 101: 341–354. doi:10.1198/016214505000000637.

    Article  Google Scholar 

  53. Prospero, Joseph M., William M. Landing, and Michael Schulz. 2010. African dust deposition to Florida: temporal and spatial variability and comparisons to models. Journal of Geophysical Research: Atmospheres 115: D13304. doi:10.1029/2009JD012773.

    Article  Google Scholar 

  54. Qualls, R.G., C.J. Richardson, and L.J. Sherwood. 2001. Soil reduction-oxidation potential along a nutrient-enrichment gradient in the Everglades. Wetlands 21: 403–411. doi:10.1672/0277-5212(2001)021[0403:SROPAA]2.0.CO;2.

    Article  Google Scholar 

  55. Raiswell, Robert, and Robert A. Berner. 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science 285: 710–724. doi:10.2475/ajs.285.8.710.

    CAS  Article  Google Scholar 

  56. Reddy, K.R., and R.D. DeLaune. 2008. Biogeochemistry of wetlands: science and applications. Boca Raton: CRC Press.

    Google Scholar 

  57. Rees, Gavin N., Darren S. Baldwin, Garth O. Watson, and Karina C. Hall. 2010. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. Science of the Total Environment 409: 134–139. doi:10.1016/j.scitotenv.2010.08.062.

    CAS  Article  Google Scholar 

  58. Rickard, David. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 °C: the rate equation. Geochimica et Cosmochimica Acta 61: 115–134. doi:10.1016/S0016-7037(96)00321-3.

    CAS  Article  Google Scholar 

  59. Rickard, David, and John W. Morse. 2005. Acid volatile sulfide (AVS). Marine Chemistry 97: 141–197. doi:10.1016/j.marchem.2005.08.004.

    CAS  Article  Google Scholar 

  60. Ross, M.S., J.F. Meeder, J.P. Sah, P.I. Ruiz, and G.J. Telesnicki. 2000. The Southeast Saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11: 101–112. doi:10.2307/3236781.

    Article  Google Scholar 

  61. Roychoudhury, Alakendra N., Joel E. Kostka, and Philippe Van Cappellen. 2003. Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuarine, Coastal and Shelf Science 57: 1183–1193. doi:10.1016/S0272-7714(03)00058-1.

    CAS  Article  Google Scholar 

  62. Rozan, Tim F., Michael E. Lassman, Douglas P. Ridge, and George W. Luther. 2000. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature 406: 879–882

    CAS  Article  Google Scholar 

  63. Rozan, Tim F., Martial Taillefert, Robert E. Trouwborst, Brian T. Glazer, Shufen Ma, Julian Herszage, Lexia M. Valdes, Kent S. Price, and George W. Luther III. 2002. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography 47: 1346–1354

    CAS  Article  Google Scholar 

  64. Schoonen, M.A.A., and H.L. Barnes. 1991a. Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100 °C. Geochimica et Cosmochimica Acta 55: 1495–1504. doi:10.1016/0016-7037(91)90122-L.

    CAS  Article  Google Scholar 

  65. Schoonen, M.A.A., and H.L. Barnes. 1991b. Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100 °C. Geochimica et Cosmochimica Acta 55: 1505–1514. doi:10.1016/0016-7037(91)90123-M.

    CAS  Article  Google Scholar 

  66. Shotyk, William. 1988. Review of the inorganic geochemistry of peats and peatland waters. Earth-Science Reviews 25: 95–176. doi:10.1016/0012-8252(88)90067-0.

    CAS  Article  Google Scholar 

  67. Stookey, Lawrence L. 1970. Ferrozine—a new spectrophotometric reagent for iron. Analytical Chemistry 42: 779–78

  68. Todd, M. Jason, R. Muneepeerakul, D. Pumo, S. Azaele, F. Miralles-Wilhelm, A. Rinaldo, and I. Rodriguez-Iturbe. 2010. Hydrological drivers of wetland vegetation community distribution within Everglades National Park, Florida. Advances in Water Resources 33 . doi:10.1016/j.advwatres.2010.04.003.Special Issue on Novel Insights in Hydrological ModellingRome-2009: 1279–1289

  69. Wang, John D., Jacobus van de Kreeke, N. Krishnan, and DeWitt Smith. 1994. Wind and tide response in Florida Bay. Bulletin of Marine Science 54: 579–601.

  70. Watts, Danielle L., Matthew J. Cohen, James B. Heffernan, and Todd Z. Osborne. 2010. Hydrologic modification and the loss of self-organized patterning in the ridge–slough mosaic of the Everglades. Ecosystems 13: 813–827. doi:10.1007/s10021-010-9356-z.

    Article  Google Scholar 

  71. White, Jeffrey R., Chad P. Gubala, Brian Fry, Jeffrey Owen, and Myron J. Mitchell. 1989. Sediment biogeochemistry of iron and sulfur in an acidic lake. Geochimica et Cosmochimica Acta 53: 2547–2559. doi:10.1016/0016-7037(89)90127-0.

    CAS  Article  Google Scholar 

  72. Wilhelmina, M.E., W. Van Der Welle, M. Cuppens, L.P.M. Lamers, and J.G.M. Roelofs. 2006. Detoxifying toxicants: interactions between sulfide and iron toxicity in freshwater wetlands. Environmental Toxicology and Chemistry 25.

  73. Zieman, Joseph, James W. Fourqurean, and Richard L. Iverson. 1989. Distribution, Abundance and Productivity of Seagrasses and Macroalgae in Florida Bay. Bulletin of Marine Science 44: 292–311

Download references

Acknowledgments

We would like to thank the FCE LTER crew for field support and the anonymous peer reviewer(s) and editor(s) for their efforts and constructive review of this manuscript. This material was developed in collaboration with the FCE LTER program which is funded by National Science Foundation Grant No. DEB-9910514, Grant No. DBI-0620409, and Grant No. DEB-1237517.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Julian.

Additional information

Communicated by Marianne Holmer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Julian, P., Chambers, R. & Russell, T. Iron and Pyritization in Wetland Soils of the Florida Coastal Everglades. Estuaries and Coasts 40, 822–831 (2017). https://doi.org/10.1007/s12237-016-0180-3

Download citation

Keywords

  • Iron
  • Sulfur
  • Pyrite
  • Everglades
  • Carbon