Estuaries and Coasts

, Volume 40, Issue 2, pp 404–418 | Cite as

Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research

  • Andrea J. Fassbender
  • Simone R. Alin
  • Richard A. Feely
  • Adrienne J. Sutton
  • Jan A. Newton
  • Robert H. Byrne
Article

Abstract

Evidence of ocean acidification (OA) throughout the global ocean has galvanized some coastal communities to evaluate carbonate chemistry variations closer to home. An impediment to doing this effectively is that, often, only one carbonate system parameter is measured at a time, while two are required to fully constrain the inorganic carbon chemistry of seawater. In order to leverage the abundant single-carbonate-parameter datasets in Washington State for more rigorous OA research, we have characterized an empirical relationship between total alkalinity (TA) and salinity (TA = 47.7 × S + 647; 1σ = ±17 μmol kg−1) for regional surface waters (≤25 m) that is robust in the salinity range from 20 to 35 for all seasons. The relationship was evaluated using 5 years of 3-h contemporaneous observations of salinity, carbon dioxide partial pressure (pCO2), and pH from a surface mooring on the outer coast of Washington. In situ pCO2 observations and salinity-based estimates of TA were used to calculate pH for comparison with in situ pH measurements. On average, the calculated pH values were 0.02 units lower than the measured pH values across multiple pH sensor deployments and showed extremely high fidelity in tracking the measured high-frequency pH variations. Our results indicate that the TA-salinity relationship will be a useful tool for expanding single-carbonate-parameter datasets in Washington State and quality controlling dual pCO2-pH time series.

Keywords

Total alkalinity Carbonate chemistry Washington state Seawater pH 

References

  1. Abril, G., S. Bouillon, F. Darchambeau, C.R. Teodoru, T.R. Marwick, F. Tamooh, F. Ochieng Omengo, et al. 2015. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12: 67–78. doi:10.5194/bg-12-67-2015.CrossRefGoogle Scholar
  2. Adelsman, H., and L.W. Binder, eds., Washington State Blue Ribbon Panel on Ocean Acidification. 2012. Ocean acidification: from knowledge to action, Washington State’s strategic response. Olympia, Washington: Washington Department of Ecology. Publication No. 12-01-015.Google Scholar
  3. Alin, S.R., R. Brainard, N. Price, J.A. Newton, A. Cohen, W. Peterson, E. DeCarlo, E. Shadwick, S. Noakes, and N. Bednaršek. 2015. Characterizing the natural system: toward sustained, integrated coastal ocean acidification observing networks to facilitate resource management and decision support. Oceanography 25: 92–107. doi:10.5670/oceanog.2015.34.CrossRefGoogle Scholar
  4. Bakker, D.C.E., B. Pfeil, K. Smith, S. Hankin, A. Olsen, S.R. Alin, C.E. Cosca, et al. 2014. An update to the surface ocean CO2 atlas (SOCAT version 2). Earth System Science Data 6: 69–90. doi:10.5194/essd-6-69-2014.CrossRefGoogle Scholar
  5. Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely. 2012. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnology and Oceanography 57: 698–710. doi:10.4319/lo.2012.57.3.0698.CrossRefGoogle Scholar
  6. Barton, A., G.G. Waldbusser, R.A. Feely, S.B. Weisberg, J.A. Newton, B. Hales, S. Cudd, et al. 2015. Impacts of coastal acidification on the Pacific northwest shellfish industry and adaptation strategies implemented in response. Oceanography 25: 146–159. doi:10.5670/oceanog.2015.38.CrossRefGoogle Scholar
  7. Bates, N.R., Y.M. Astor, M.J. Church, K. Currie, J.E. Dore, M. González-Dávila, L. Lorenzoni, F. Muller-Karger, J. Olafsson, and J.M. Santana-Casiano. 2014. A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27: 126–141. doi:10.5670/oceanog.2014.16.CrossRefGoogle Scholar
  8. Boehm, A.B., M.Z. Jacobson, M. O’Donnell, M. Sutula, W.W. Wakefield, S.B. Weisberg, and E. Whiteman. 2015. Ocean acidification science needs for natural resource managers of the north American west coast. Oceanography 25: 170–181. doi:10.5670/oceanog.2015.40.CrossRefGoogle Scholar
  9. Borges, A.V. 2011. Present day carbon dioxide fluxes in the coastal ocean and possible feedbacks under global change. In Oceans and the atmospheric carbon content, eds. Pedro Duarte, and J. Magdalena Santana-Casiano, 47–77. Dordrecht: Springer Netherlands. doi:10.1007/978-90-481-9821-4_3.CrossRefGoogle Scholar
  10. Byrne, R.H. 2014. Measuring ocean acidification: new technology for a new era of ocean chemistry. Environmental Science and Technology 48: 5352–5360. doi:10.1021/es405819p.CrossRefGoogle Scholar
  11. Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365–365. doi:10.1038/425365a.CrossRefGoogle Scholar
  12. Dickson, A.G. 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Research Part A. Oceanographic Research Papers 28: 609–623. doi:10.1016/0198-0149(81)90121-7.CrossRefGoogle Scholar
  13. Dickson, A.G. 1990. Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. Journal of Chemical Thermodynamics 22: 113–127.CrossRefGoogle Scholar
  14. Dickson, A.G., C.L. Sabine, and J.R. Christian, ed. (2007) Guide to best practices for ocean CO 2 measurements. PICES Special Publication 3, 191 ppGoogle Scholar
  15. Dickson AG (2010a) Seawater carbonate chemistry. In Guide to best practices for ocean acidification research and data reporting, eds. U. Riebesell, V. J. Fabry, L. Hansson and J.-P. Gattuso, 17–40. Luxembourg: Publications Office of the European Union.Google Scholar
  16. Dickson, A.G. 2010b. Standards for ocean measurements. Oceanography 23: 34–47. doi:10.5670/oceanog.2010.22.CrossRefGoogle Scholar
  17. Dickson, A.G., and J.P. Riley. 1978. The effect of analytical error on the evaluation of the components of the aquatic carbon-dioxide system. Marine Chemistry 6: 77–85. doi:10.1016/0304-4203(78)90008-7.CrossRefGoogle Scholar
  18. Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192. doi:10.1146/annurev.marine.010908.163834.CrossRefGoogle Scholar
  19. Evans, W., B. Hales, and P.G. Strutton. 2013. pCO2 distributions and air-water CO2. Estuarine, Coastal and Shelf Science 117: 260–272. doi:10.1016/j.ecss.2012.12.003.CrossRefGoogle Scholar
  20. Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432. doi:10.1093/icesjms/fsn048.CrossRefGoogle Scholar
  21. Fabry, V.J., J. McClintock, J.T. Mathis, and J. Grebmeier. 2009. Ocean acidification at high latitudes: the bellwether. Oceanography 22: 160–171. doi:10.5670/oceanog.2009.105.CrossRefGoogle Scholar
  22. Fassbender, A.J. 2014. New approaches to study the marine carbon cycle. PhD dissertation, University of Washington. Proquest, 1/11/2016. http://hdl.handle.net/1773/27552.
  23. Fassbender, A.J., C.L. Sabine, N. Lawrence-Slavas, E.H. De Carlo, C. Meinig, and S. Maenner-Jones. 2015. Robust sensor for extended autonomous measurements of surface ocean dissolved inorganic carbon. Environmental Science & Technology 49: 3628–3635. doi:10.1021/es5047183.CrossRefGoogle Scholar
  24. Fassbender, A.J., C.L. Sabine, and M.F. Cronin. 2016a. Net community production and calcification from 7 years of NOAA station Papa mooring measurements. Global Biogeochemical Cycles 30: 250–267. doi:10.1002/2015GB005205.CrossRefGoogle Scholar
  25. Fassbender, A.J., C.L. Sabine, and K.M. Feifel. 2016b. Consideration of coastal carbonate chemistry in understanding biological calcification. Geophysical Research Letters: 1–10. doi:10.1002/2016GL068860.
  26. Feely, R.A., and C.L. Sabine. 2011. Carbon dioxide and hydrographic measurements during the 2007 NACP west coast cruise. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.CLIVAR_NACP_West_Coast_Cruise_2007.Google Scholar
  27. Feely, R.A., R. Wanninkhof, H.B. Milburn, C.E. Cosca, M. Stapp, and P.P. Murphy. 1998. A new automated underway system for making high precision pCO2 measurements onboard research ships. Analytica Chimica Acta 377: 185–191. doi:10.1016/S0003-2670(98)00388-2.CrossRefGoogle Scholar
  28. Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J.A. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362–366. doi:10.1126/science.1097329.CrossRefGoogle Scholar
  29. Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320: 1490–1492. doi:10.1126/science.1155676.CrossRefGoogle Scholar
  30. Feely, R.A., S.R. Alin, J.A. Newton, C.L. Sabine, M. Warner, A. Devol, C. Krembs, and C. Maloy. 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science 88: 442–449. doi:10.1016/j.ecss.2010.05.004.CrossRefGoogle Scholar
  31. Feely, R.A., S.R. Alin, B. Hales, G. Johnson, L. Juranek, R.H. Byrne, W. Peterson, M. Goni, X. Liu, and D. Greeley. 2014a. Carbon dioxide, hydrographic and chemical measurements onboard R/V Wecoma during the NOAA PMEL west coast ocean acidification cruise WCOA2011 (august 12 - 30, 2011). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/OTG.COAST_WCOA2011.Google Scholar
  32. Feely, R.A., S.R. Alin, B. Hales, G. Johnson, L. Juranek, R.H. Byrne, W. Peterson, and D. Greeley. 2014b. Carbon dioxide, hydrographic and chemical measurements onboard R/V bell M. Shimada during the NOAA PMEL west Coast Ocean acidification cruise WCOA2012 (September 4–17, 2012). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/OTG.COAST_WCOA2012.Google Scholar
  33. Feely, R.A., S.R. Alin, B. Hales, G.C. Johnson, R.H. Byrne, W.T. Peterson, X. Liu, and D. Greeley. 2015. Chemical and hydrographic profile measurements during the west coast ocean acidification cruise WCOA2013 (august 3-29, 2013). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/OTG.COAST_WCOA2013.Google Scholar
  34. Friis, K., A. Kortzinger, and D.W.R. Wallace. 2003. The salinity normalization of marine inorganic carbon chemistry data. Geophysical Research Letters. doi:10.1029/2002GL015898.Google Scholar
  35. Fry, C.H., T. Tyrrell, M.P. Hain, N.R. Bates, and E.P. Achterberg. 2015. Analysis of global surface ocean alkalinity to determine controlling processes. Marine Chemistry 174 : 46–57. doi:10.1016/j.marchem.2015.05.003.Elsevier B.VCrossRefGoogle Scholar
  36. Gray, S.E.C., M.D. DeGrandpre, T.S. Moore, T.R. Martz, G. Friederich, and K.S. Johnson. 2011. Applications of in situ pH measurements for inorganic carbon calculations. Marine Chemistry 125 : 82–90. doi:10.1016/j.marchem.2011.02.005.Elsevier B.VCrossRefGoogle Scholar
  37. Hernandez-Ayon, J.M., A. Zirino, A.G. Dickson, T. Camiro-Vargas, and E. Valenzuela. 2007. Estimating the contribution of organic bases from microalgae to the titration alkalinity in coastal seawaters. Limnology and Oceanography: Methods 5: 225–232. doi:10.4319/lom.2007.5.225.CrossRefGoogle Scholar
  38. Hickey, B.M., and N.S. Banas. 2008. Why is the northern end of the California current system so productive? Oceanography 21: 90–107.CrossRefGoogle Scholar
  39. Hickey, B., S. Geier, N. Kachel, and A. MacFadyen. 2005. A bi-directional river plume: the Columbia in summer. Continental Shelf Research 25: 1631–1656. doi:10.1016/j.csr.2005.04.010.CrossRefGoogle Scholar
  40. Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, et al. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PloS One 6: e28983. doi:10.1371/journal.pone.0028983.CrossRefGoogle Scholar
  41. Hu, Xinping, Jennifer Beseres Pollack, Melissa R. Mccutcheon, Paul A. Montagna, and Zhangxian Ouyang. 2015. Long-term alkalinity decrease and acidification of estuaries in northwestern Gulf of Mexico. Environmental Science & Technology 49: 3401–3409. doi:10.1021/es505945p.CrossRefGoogle Scholar
  42. Hunt, C.W., J.E. Salisbury, and D. Vandemark. 2011. Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers. Biogeosciences 8: 3069–3076. doi:10.5194/bg-8-3069-2011.CrossRefGoogle Scholar
  43. Juranek, L.W., R.A. Feely, D. Gilbert, H.J. Freeland, and L.A. Miller. 2011. Real-time estimation of pH and aragonite saturation state from Argo profiling floats: prospects for an autonomous carbon observing strategy. Geophysical Research Letters 38 . doi:10.1029/2011GL048580.n/a–n/a
  44. Kelly, R.P., M.M. Foley, W.S. Fisher, R.A. Feely, B.S. Halpern, G.G. Waldbusser, and M.R. Caldwell. 2011. Mitigating local causes of ocean acidification with existing Laws. Science 332: 1036–1037. doi:10.1126/science.1203815.CrossRefGoogle Scholar
  45. Kim, Hyun-Cheol, K. Lee, and Wonyong Choi. 2006. Contribution of phytoplankton and bacterial cells to the measured alkalinity of seawater. Limnology and Oceanography 51: 331–338. doi:10.4319/lo.2006.51.1.0331.CrossRefGoogle Scholar
  46. Kuliński, K., B. Schneider, K. Hammer, U. Machulik, and D. Schulz-Bull. 2014. The influence of dissolved organic matter on the acid-base system of the Baltic Sea. Journal of Marine Systems 132: 106–115. doi:10.1016/j.jmarsys.2014.01.011.CrossRefGoogle Scholar
  47. Lauvset, S.K., N. Gruber, P. Landschützer, A. Olsen, and J. Tjiputra. 2015. Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences 12: 1285–1298. doi:10.5194/bg-12-1285-2015.CrossRefGoogle Scholar
  48. Lee, K., L.T. Tong, F.J. Millero, C.L. Sabine, A.G. Dickson, C. Goyet, G.H. Park, R. Wanninkhof, R.A. Feely, and R.M. Key. 2006. Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophysical Research Letters 33: L19605. doi:10.1029/2006GL027207.CrossRefGoogle Scholar
  49. Lewis E Wallace DWR (1998) MATLAB program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee Google Scholar
  50. Liu, X., M.C. Patsavas, and R.H. Byrne. 2011. Purification and characterization of meta-cresol purple for spectrophotometric seawater pH measurements. Environmental Science & Technology 45: 4862–4868. doi:10.1021/es200665d.CrossRefGoogle Scholar
  51. Lueker, T.J., A.G. Dickson, and C.D. Keeling. 2000. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Marine Chemistry 70: 105–119. doi:10.1016/S0304-4203(00)00022-0.CrossRefGoogle Scholar
  52. Martz, T., K. Daly, R.H. Byrne, J. Stillman, and D. Turk. 2015. Technology for ocean acidification research: needs and availability. Oceanography 25: 40–47. doi:10.5670/oceanog.2015.30.CrossRefGoogle Scholar
  53. McLaughlin, K., S.B. Weisberg, A.G. Dickson, G.E. Hofmann, J.A. Newton, D. Aseltine-Neilson, A. Barton, et al. 2015. Core principles of the California current acidification network: linking chemistry, physics, and ecological effects. Oceanography 25: 160–169. doi:10.5670/oceanog.2015.39.CrossRefGoogle Scholar
  54. Millero, F.J. 2007. The marine inorganic carbon cycle. Chemical Reviews 107: 308–341. doi:10.1021/cr0503557.CrossRefGoogle Scholar
  55. Mucci, A. 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science 283: 780–799. doi:10.2475/ajs.283.7.780.CrossRefGoogle Scholar
  56. Muller, François L.L., and Bjørn Bleie. 2008. Estimating the organic acid contribution to coastal seawater alkalinity by potentiometric titrations in a closed cell. Analytica Chimica Acta 619: 183–191. doi:10.1016/j.aca.2008.05.018.CrossRefGoogle Scholar
  57. Newton JA, Feely RA, Jewett EB, Williamson P, Mathis JT (2014) Global ocean acidification observing network: requirements and governance plan Google Scholar
  58. Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686. doi:10.1038/nature04095.CrossRefGoogle Scholar
  59. Pfeil, B., A. Olsen, D.C.E. Bakker, S. Hankin, H. Koyuk, A. Kozyr, J. Malczyk, et al. 2013. A uniform, quality controlled surface ocean CO2 atlas (SOCAT). Earth System Science Data 5: 125–143. doi:10.5194/essd-5-125-2013.CrossRefGoogle Scholar
  60. Pierrot, D., C. Neill, K. Sullivan, R.D. Castle, R. Wanninkhof, Lüger Heike, T. Johannessen, A. Olsen, R.A. Feely, and C.E. Cosca. 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep-Sea Research Part II: Topical Studies in Oceanography 56: 512–522. doi:10.1016/j.dsr2.2008.12.005.CrossRefGoogle Scholar
  61. Raymond, P.A., and J.J. Cole. 2003. Increase in the export of alkalinity from North America’s largest river. Science 301.Google Scholar
  62. Raymond, P.A., N.-H. Oh, R.E. Turner, and W. Broussard. 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451: 449–452. doi:10.1038/nature06505.CrossRefGoogle Scholar
  63. Rhein, M., S.R. Rintoul, S. Aoki, E. Campos, D. Chambers, R.A. Feely, S. Gulev, et al. 2013. Observations: ocean. In Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, eds. T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge/New York: Cambridge University Press.Google Scholar
  64. Sabine CL, Ducklow HW (2010) International carbon coordination: Roger Revelle’s legacy in the intergovernmental oceanographic commission 23: 48–61Google Scholar
  65. Sabine, C.L., S. Hankin, H. Koyuk, D.C.E. Bakker, B. Pfeil, A. Olsen, N. Metzl, et al. 2013. Surface ocean CO2 atlas (SOCAT) gridded data products. Earth System Science Data 5: 145–153. doi:10.5194/essd-5-145-2013.CrossRefGoogle Scholar
  66. Sutton, A.J., C.L. Sabine, S. Maenner-Jones, S. Musielewicz, R. Bott, and J. Osborne. 2011. High-resolution ocean and atmosphere pCO2 time-series measurements from mooring LaPush_125W_48N. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.TSM_LaPush_125W_48N.Google Scholar
  67. Sutton, A.J., R.A. Feely, C.L. Sabine, M.J. McPhaden, T. Takahashi, F.P. Chavez, G. Friederich, and J.T. Mathis. 2014a. Natural variability and anthropogenic change in equatorial Pacific surface ocean pCO2 and pH. Global Biogeochemical Cycles 28: 131–145. doi:10.1002/2013GB004679.CrossRefGoogle Scholar
  68. Sutton, A.J., C.L. Sabine, S. Maenner-Jones, N. Lawrence-Slavas, C. Meinig, R.A. Feely, J.T. Mathis, et al. 2014b. A high-frequency atmospheric and seawater pCO2 data set from 14 open ocean sites using a moored autonomous system. Earth System Science Data 6: 353–366. doi:10.5194/essdd-7-385-2014.CrossRefGoogle Scholar
  69. Sutton, A.J., C.L. Sabine, R.A. Feely, W.-J. Cai, M.F. Cronin, Michael J. McPhaden, J.M. Morell, et al. 2016. Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside pre-industrial bounds. Biogeosciences Discussions: 1–30. doi:10.5194/bg-2016-104.
  70. Takahashi, T., S.C. Sutherland, D.W. Chipman, J.G. Goddard, and C. Ho. 2014. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry 164: 95–125. doi:10.1016/j.marchem.2014.06.004.CrossRefGoogle Scholar
  71. Takeshita, Y., C.A. Frieder, T.R. Martz, J.R. Ballard, R.A. Feely, S. Kram, S. Nam, M.O. Navarro, N.N. Price, and J.E. Smith. 2015. Including high-frequency variability in coastal ocean acidification projections. Biogeosciences 12: 5853–5870. doi:10.5194/bg-12-5853-2015.CrossRefGoogle Scholar
  72. Uppstrom, L.R. 1974. The boron-chlorinity ratio of deep seawater from the Pacific Ocean. Deep-Sea Research Part I 21: 161–162.Google Scholar
  73. van Heuven, S., D. Pierrot, J.W.B. Rae, E. Lewis, and D.W.R. Wallace. 2011. MATLAB program developed for CO2 system calculations. ORNL/CDIAC-105b. ORNL/CDIAC-105b. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1.Google Scholar
  74. Waldbusser, G.G., and J.E. Salisbury. 2014. Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 6: 221–247. doi:10.1146/annurev-marine-121211-172238.CrossRefGoogle Scholar
  75. Waldbusser, G.G., B. Hales, C.J. Langdon, B.A. Haley, P. Schrader, E.L. Brunner, M.W. Gray, C.A. Miller, and I. Gimenez. 2014. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature Climate Change 5: 273–280. doi:10.1038/nclimate2479.CrossRefGoogle Scholar
  76. Wolf-Gladrow, D.A., R.E. Zeebe, C. Klaas, A. Kortzinger, and A.G. Dickson. 2007. Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Marine Chemistry 106: 287–300. doi:10.1016/j.marchem.2007.01.006.CrossRefGoogle Scholar
  77. Wootton, T.J., and C.A. Pfister. 2012. Carbon system measurements and potential climatic drivers at a site of rapidly declining ocean pH. Edited by Wei-Chun chin. PloS One 7: e53396. doi:10.1371/journal.pone.0053396.CrossRefGoogle Scholar
  78. Xue, L., W.-J. Cai, X. Hu, C.L. Sabine, S. Jones, A.J. Sutton, L.-Q. Jiang, and J.J. Reimer. 2016. Sea surface carbon dioxide at the Georgia time series site (2006–2007): air–sea flux and controlling processes. Progress in Oceanography 140 : 14–26. doi:10.1016/j.pocean.2015.09.008.Elsevier LtdCrossRefGoogle Scholar
  79. Yang, Bo, R.H. Byrne, and Michael Lindemuth. 2015. Contributions of organic alkalinity to total alkalinity in coastal waters: a spectrophotometric approach. Marine Chemistry 176 : 199–207. doi:10.1016/j.marchem.2015.09.008.Elsevier B.VCrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation (outside the USA) 2016

Authors and Affiliations

  • Andrea J. Fassbender
    • 1
  • Simone R. Alin
    • 1
  • Richard A. Feely
    • 1
  • Adrienne J. Sutton
    • 1
    • 2
  • Jan A. Newton
    • 3
  • Robert H. Byrne
    • 4
  1. 1.Pacific Marine Environmental LaboratoryNational Oceanic and Atmospheric AdministrationSeattleUSA
  2. 2.Joint Institute for the Study of the Atmosphere and OceanUniversity of WashingtonSeattleUSA
  3. 3.Applied Physics LaboratoryUniversity of WashingtonSeattleUSA
  4. 4.College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA

Personalised recommendations