Skip to main content
Log in

Depth-Related Changes in Reproductive Strategy of a Cold-Temperate Zostera marina Meadow

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Biomass allocation and demographic characteristics of a Danish Zostera marina population were determined along a depth gradient of light and exposure to evaluate the reproductive strategy for meadow maintenance and recovery. From May to September, biomass, shoot growth and reproductive allocation were measured monthly at three depths (1.8, 4 and 6 m). Also, seedling survival along the deep edge (6.2 m) of the studied meadow was followed over a 12-month period. Shoot density and biomass showed pronounced differences among depths with up to 12-fold lower shoot density and 6-fold lower biomass at deep compared to shallow sites. Comparatively, little variation was found in leaf formation rates and rhizome elongation rates among depths. However, new shoots formed through vegetative reproduction and surviving until September constituted a significantly higher fraction of total shoot density in shallow water (45.7 %) than in deep water (17.3–21.1 %). Conversely, allocation to sexual reproduction was highest at intermediate and high water depths where the proportion of reproductive shoots to total shoot density at time of maximum density was 21.1 and 10.6 %, respectively, and only 3.9 % at the shallow depth. Seed production was also higher at intermediate depth (1970 seeds m−2) than at the upper (1230 seeds m−2) and lower (760 seeds m−2) distribution limit. Seedling recruitment within the meadow took place at all sampling depths but no seedlings persisted throughout the summer period, whereas 8 % of the seedlings established in bare areas along the deep meadow edge (0.43 seedlings m−2) survived their first year. Overall, the results suggest that the shallow edge of the meadow is primarily maintained by vegetative recruitment whereas the deep edge to larger extent relies on sexual recruitment. The intermediate depth zone may act as a buffer zone supporting the maintenance of shallower and deeper eelgrass through seed supply and vegetative expansion, thereby stabilizing the meadow by increasing its resilience towards disturbances and its recovery potential upon disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abal, E.G., N. Loneragan, P. Bowen, C.J. Perry, J.W. Udy, and W.C. Dennison. 1994. Physiological and morphological responses of the seagrass Zostera capricorni Aschers to light intensity. Journal of Experimental Marine Biology and Ecology 178: 113–129.

    Article  Google Scholar 

  • Biber, P.D., W.J. Kenworthy, and H.W. Paerl. 2009. Experimental analysis of the response and recovery of Zostera marina (L.) and Halodule wrightii (Ascher.) to repeated light-limitation stress. Journal of Experimental Marine Biology and Ecology 369: 110–117.

    Article  Google Scholar 

  • Bintz, J.C., and S.W. Nixon. 2001. Responses of eelgrass Zostera marina seedlings to reduced light. Marine Ecology Progress Series 223: 133–141.

    Article  Google Scholar 

  • Boese, B.L., J.E. Kaldy, P.J. Clinton, P.M. Eldridge, and C.L. Folger. 2009. Recolonization of intertidal Zostera marina L. (eelgrass) following experimental shoot removal. Journal of Experimental Marine Biology and Ecology 374: 69–77.

    Article  Google Scholar 

  • Brown, J.H., J.F. Gillooly, A.P. Allen, V.M. Savage, and G.B. West. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789. doi:10.1890/03-9000.

    Article  Google Scholar 

  • Cabaco, S., and R. Santos. 2012. Seagrass reproductive effort as an ecological indicator of disturbance. Ecological Indicators 23: 116–122.

    Article  Google Scholar 

  • Cabello-Pasini, A., C. Lara-Turrent, and R.C. Zimmerman. 2002. Effect of storms on photosynthesis, carbohydrate content and survival of eelgrass populations from a coastal lagoon and the adjacent open ocean. Aquatic Botany 74: 149–164.

    Article  CAS  Google Scholar 

  • Collier, C.J., P.S. Lavery, R. Masini, and P.J. Ralph. 2007. Morphological, growth and meadow characteristics of the seagrass Posidoniasinuosa along a depth-related gradient of light availability. Marine Ecology Progress Series. 337: 103–115.

    Article  Google Scholar 

  • Cook, R.E. 1985. Growth and development in clonal plant populations. In Population biology of clonal organisms, eds. J.B.C. Jackson, L.W. Buss, and R.E. Cook, 259–296. New Haven Connecticut: Yale University Press.

    Google Scholar 

  • Dennison, W.C. 1987. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquatic Botany 27: 15–26.

    Article  Google Scholar 

  • Dennison, W.C., and R.S. Alberte. 1982. Photosynthetic responses of Zostera marina L. (eelgrass) to in situ manipulations of light intensity. Oecologia 55: 137–144.

    Article  Google Scholar 

  • Dennison, W.C., R.J. Orth, K.A. Moore, J.C. Stevenson, V. Carter, S. Kollar, P.W. Bergstrom, and R.A. Batiuk. 1993. Assessing water quality with submerged aquatic vegetation. Bioscience 43: 86–94.

    Article  Google Scholar 

  • Duarte, C.M. 1991. Seagrass depth limits. Aquatic Botany 40: 363–377.

    Article  Google Scholar 

  • Duarte, C.M., J.W. Fouqurean, D. Krause-Jensen, and B. Olesen. 2006. Dynamics of seagrass stability and change. In Seagrasses: biology, ecology and conservation, eds. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 271–294. Dortrecht: Springer.

    Google Scholar 

  • Duarte, C.M., N. Marbà, D. Krause-Jensen, and M. Sánchez-Camacho. 2007. Testing the predictive power of seagrass depth limit models. Estuaries and Coasts 30: 652–656.

    Article  Google Scholar 

  • Fonseca, M.S., J.C. Zieman, G.W. Thayer, and J.S. Fisher. 1983. The role of current velocity in structuring eelgrass (Zostera marina L.) meadows. Estuarine, Coastal and Shelf Science 17: 367–380.

    Article  Google Scholar 

  • Fyns Amt. 2002. Kystvande 2001. (in Danish). Vandmiljøovervågning. Natur- og Vandmiljøafdelingen, Fyns Amt.

  • Greve, T.M., and D. Krause-Jensen. 2005. Stability of eelgrass (Zostera marina L.) depth limits: influence of habitat type. Marine Biology 147: 803–812.

    Article  Google Scholar 

  • Greve, T.M., D. Krause-Jensen, M.B. Rasmussen, and P.B. Christensen. 2005. Means of rapid eelgrass (Zostera marina L.) recolonisation in former dieback areas. Aquatic Botany 82: 143–156.

    Article  Google Scholar 

  • Holmer, M., and E.J. Bondgaard. 2001. Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquatic Botany 70: 29–38.

    Article  CAS  Google Scholar 

  • Inglis, G.J. 2000. Variation in the recruitment behaviour of seagrass seeds: implications for populations dynamics and resource management. Pacific Conservation Biology 5: 251–259.

    Article  Google Scholar 

  • Jarvis, J.C., K.A. Moore, and W.J. Kenworthy. 2012. Characterization and ecological implication of eelgrass life history strategies near the species’ southern limit in the western North Atlantic. Marine Ecology Progress Series 444: 43–56.

    Article  Google Scholar 

  • Kenworthy, W.J., C.L. Gallegos, C. Costello, D. Field, and G. di Carlo. 2014. Dependence of eelgrass (Zostera marina) light requirements on sediment organic matter in Massachusetts coastal bays: implications for remediation and restoration. Marine Pollution Bulletin 83: 446–457.

    Article  CAS  Google Scholar 

  • Kim, S.H., J.-H. Kim, S.R. Park, and K.-S. Lee. 2014. Annual and perennial life history strategies of Zostera marina populations under different light regimes. Marine Ecology Progress Series 509: 1–13.

    Article  Google Scholar 

  • Kim, Y.K., S.H. Kim, and K.S. Lee. 2015. Seasonal growth responses of the seagrass Zostera marina under severely diminished light conditions. Estuaries and Coasts 38: 558–568.

    Article  CAS  Google Scholar 

  • Krause-Jensen, D., A.L. Middelboe, K. Sand-Jensen, and P.B. Christensen. 2000. Eelgrass, Zostera marina, growth along depth gradients: upper boundaries of the variation as a powerful predictive tool. Oikos 91: 233–244.

    Article  Google Scholar 

  • Krause-Jensen, D., M.F. Pedersen, and C. Jensen. 2003. Regulation of eelgrass (Zostera marina) cover along depth gradients in Danish coastal waters. Estuaries and Coasts 26: 866–877.

    Article  Google Scholar 

  • Krause-Jensen, D., J. Carstensen, S.L. Nielsen, T. Dalsgaard, P.B. Christensen, H. Fossing, and M.B. Rasmussen. 2011. Sea bottom characteristics affect depth limits of eelgrass (Zostera marina L. Marine Ecology Progress Series 425: 91–102. doi:10.3354/meps09026.

    Article  Google Scholar 

  • Lee, K.-S., J.-I. Park, Y.K. Kim, S.R. Park, and J.-H. Kim. 2007. Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role of new shoot recruitment from seed banks. Marine Ecology Progress Series 342: 105–115.

    Article  CAS  Google Scholar 

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.

    Article  CAS  Google Scholar 

  • Munkes, B. 2005. Eutrophication, phase shift, the delay and the potential return in the Greifswalder Bodden, Baltic Sea. Aquatic Sciences 67: 372–381.

    Article  CAS  Google Scholar 

  • Ochieng, C.A., F.T. Short, and D.I. Walker. 2010. Photosynthetic and morphological responses of eelgrass (Zostera marina L.) to a gradient of light conditions. Journal of Marine Biology and. Ecology 382: 117–124.

    CAS  Google Scholar 

  • Olesen, B. 1999. Reproduction in Danish eelgrass (Zostera marina L.) stands: size-dependence and biomass partitioning. Aquatic Botany 65: 209–219.

    Article  Google Scholar 

  • Olesen, B., and K. Sand-Jensen. 1993. Seasonal acclimatization of eelgrass Zostera marina growth to light. Marine Ecology Progress Series 94: 91–99.

    Article  Google Scholar 

  • Olesen, B., and K. Sand-Jensen. 1994. Demography of shallow eelgrass (Zostera marina) populations—shoot dynamics and biomass development. Journal of Ecology 82: 379–390.

    Article  Google Scholar 

  • Olesen, B., S. Enríquez, C.M. Duarte, and K. Sand-Jensen. 2002. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Marine Ecology Progress Series 236: 89–97.

    Article  Google Scholar 

  • Olesen, B., D. Krause-Jensen, N. Marbà, and P.B. Christensen. 2015. Eelgrass (Zostera marina L) in subarctic Greenland: dense meadows with slow biomass turnover in cold waters. Marine Ecology Progress Series 518: 107–121. doi:10.3354/meps11087.

    Article  Google Scholar 

  • Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. Bioscience 56: 987–996.

    Article  Google Scholar 

  • Peralta, G., J.L. Pérez-Lloréns, I. Hernández, and J.J. Vergara. 2002. Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem. Journal of Experimental Marine Biology and Ecology 269: 9–26.

    Article  Google Scholar 

  • Phillips, R.C., and T.W. Backman. 1983. Phenology and reproductive biology of eelgrass (Zostera marina L.) at Bahia Kino, sea of Cortez, Mexico. Aquatic Botany 17: 85–90.

    Article  Google Scholar 

  • Plus, M., J.M. Deslous-Paoli, and F. Dagault. 2003. Seagrass (Zostera marina L.) bed recolonisation after anoxia induced full mortality. Aquatic Botany 77: 121–134.

    Article  Google Scholar 

  • Qin, L.-Z., W.-T. Li, Z.-M. Zhang, M. Nie, and Y. Li. 2014. Sexual reproduction and seed dispersal pattern of annual and perennial Zostera marina in a heterogeneous habitat. Wetlands Ecology and Management 22: 671–682.

    Article  Google Scholar 

  • Riemann, B., J. Carstensen, K. Dahl, H. Fossing, J.W. Hansen, H.H. Jakobsen, A.B. Josefson, D. Krause-Jensen, S. Markager, P.A. Stæhr, K. Timmermann, J. Windolf, and J.H. Andersen. 2016. Recovery of Danish coastal ecosystems after reductions in nutrient loading: a holistic ecosystem approach. Estuaries and Coasts 39: 82–97.

    Article  CAS  Google Scholar 

  • Robertson, A.I., and K.H. Mann. 1984. Disturbance by ice and life-history adaptations of the seagrass Zostera marina. Marine Biology 80: 131–141.

    Article  Google Scholar 

  • Rueda, J.L., C. Salas, and P. Marina. 2008. Seasonal variation in a deep subtidal Zostera marina L. Bed in southern Spain (western Mediterranean Sea. Botanica Marina 51: 92–102.

    Article  Google Scholar 

  • Ruiz, J.M., and J. Romero. 2001. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Marine Ecology Progress Series 215: 107–120.

    Article  Google Scholar 

  • Sand-Jensen, K. 1975. Biomass, net production and growth dynamics in an eelgrass (Zostera marina L.) population in Vellerup Vig, Denmark. Ophelia 14: 185–201.

    Article  Google Scholar 

  • Santamaría-Gallegos, N.A., J.L. Sánchez-Lizaso, and E.F. Félix-Pico. 2000. Phenology and growth cycle of annual subtidal eelgrass in a subtropical locality. Aquatic Botany 66: 329–339.

    Article  Google Scholar 

  • Short, F.T., and C.M. Duarte. 2001. Methods for the measurement of seagrass growth and production. In Global seagrass research methods, eds. F.T. Short, and R.G. Coles, 155–182. Amsterdam: Elsevier 482 pages.

    Chapter  Google Scholar 

  • Short, F.T., and S. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses. Environmental Conservation 23: 17–27.

    Article  Google Scholar 

  • Terrados, J., C.M. Duarte, L. Kamp-Nielsen, N.R.S. Agawin, E. Gacia, C.D.A. Lacap, M.D. Fortes, J. Borum, M. Lubanski, and T. Greve. 1999. Are seagrass growth and survival constrained by the reducing conditions of the sediment? Aquatic Botany 65: 175–197.

    Article  Google Scholar 

  • Terrados, J., M. Grau-Castella, D. Piñol-Santiñà, and P. Riera-Fernández. 2006. Biomass and primary production of a 8–11 m depth meadow versus <3 m depth meadows of the seagrass Cymodocea Nodosa (Ucria) Ascherson. Aquatic Botany 84: 324–332.

    Article  Google Scholar 

  • Tomlinson, P.B. 1974. Vegetative morphology and meristem dependence—the foundation of productivity in seagrasses. Aquaculture 4: 107–130.

    Article  Google Scholar 

  • van Lent, F., and J.M. Verschuure. 1994. Intraspecific variability of Zostera marina L. (eelgrass) in the estuaries and lagoons of the southwestern Netherlands. II. Relation with environmental factors. Aquatic Botany 48: 59–75.

    Article  Google Scholar 

  • Waycott, M., C.M. Duarte, T.J.B. Cattuthers, R.J. Orth, W.C. Dennison, S. Olayarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 12377–12381.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study received financial support from the “NOVAGRASS” project funded by the Danish Council for Strategic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Olesen.

Additional information

Communicated by Masahiro Nakaoka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olesen, B., Krause-Jensen, D. & Christensen, P.B. Depth-Related Changes in Reproductive Strategy of a Cold-Temperate Zostera marina Meadow. Estuaries and Coasts 40, 553–563 (2017). https://doi.org/10.1007/s12237-016-0155-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0155-4

Keywords

Navigation