Estuaries and Coasts

, Volume 39, Issue 6, pp 1694–1708 | Cite as

Nitrogen Uptake and Internal Recycling in Zostera marina Exposed to Oyster Farming: Eelgrass Potential as a Natural Biofilter

  • Jose Sandoval-Gil
  • Ana Alexandre
  • Rui Santos
  • Víctor F. Camacho-IbarEmail author


Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintín Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 + uptake capacities by pulse labeling with 15NH4 + and plant photosynthesis and respiration. The internal 15N resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 + uptake rate (33.1 mmol NH4 + m−2 day−1) relative to those not exposed to oyster cultures (25.6 mmol NH4 + m−2 day−1). We calculated that an eelgrass meadow of 15–16 ha (which represents only about 3–4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 + excreted by oysters (∼5.2 × 106 mmol NH4 + day−1). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 + produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal 15N into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 + uptake and less negative δ13C values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients.


Eelgrass Oyster aquaculture Ammonium uptake Nitrogen recycling Stable isotopes Biofilter 



This research was funded by the National Council for Science and Technology (CONACYT, Mexico, project CB-2010-01-154376 awarded to VFCI). JMSG was supported by a postdoctoral grant from the Mexican Ministry of Public Education (SEP, PROMEP/103.5/13/5009). AA was supported by an Academic Mobility Grant provided by the Autonomous University of Baja California (UABC) and a postdoctoral fellowship from the Portuguese Foundation for Science and Technology (FCT, SFRH/BPD/91629/2012). We are especially grateful to Christine Harris (from the editorial team of the journal Ciencias Marinas) for her support during the revision of the manuscript, and to Julieta Hernández, Nevia Alfaro, M. Carmen Ávila-López and Eduardo Ortíz-Campos, Jesús Galarza (IIO-UABC) and the personnel from Ostrícola Nautilus for their technical support. Data of irradiance was kindly provided by Dr. Alejandro Cabello-Pasini.


  1. Alcoverro, T., M. Manzanera, and J. Romero. 1998. Seasonal and age-dependent variability of Posidonia oceanica (L.) Delile photosynthetic parameters. Journal of Experimental Marine Biology and Ecology 230: 1–13.CrossRefGoogle Scholar
  2. Alcoverro, T., M. Manzanera, and J. Romero. 2001. Annual metabolic carbon balance of the seagrass Posidonia oceanica: the importance of carbohydrate reserves. Marine Ecology Progress Series 211: 105–116.CrossRefGoogle Scholar
  3. Alexandre, A., J. Silva, T.J. Bouma, and R. Santos. 2011. Inorganic nitrogen uptake kinetics and whole-plant nitrogen budget in the seagrass Zostera noltii. Journal of Experimental Marine Biology and Ecology 401: 7–12.CrossRefGoogle Scholar
  4. Alexandre, A., P.W. Hill, D.L. Jones, and R. Santos. 2015. Dissolved organic nitrogen: a relevant, complementary source of nitrogen for the seagrass Zostera marina. Limnology and Oceanography. doi: 10.1002/lno.10084.Google Scholar
  5. Alkhatib, M., M.F. Lehmann, and P.A. del Giorgio. 2012. The nitrogen isotope effect of benthic remineralization-nitrification-denitrification coupling in an estuarine environment. Biogeosciences 9: 1633–1646.CrossRefGoogle Scholar
  6. Apostolaki, E.T., S. Vizzini, and I. Karakassis. 2012. Leaf vs. epiphyte nitrogen uptake in a nutrient enriched Mediterranean seagrass (Posidonia oceanica) meadow. Aquatic Botany 96(1): 58–62.CrossRefGoogle Scholar
  7. Booth, D.M., and K.L. Heck. 2009. Effects of the American oyster Crassostrea virginica on growth rates of the seagrass Halodule wrightii. Marine Ecology Progress Series 389: 117–126.CrossRefGoogle Scholar
  8. Buhmann, A., and J. Papenbrock. 2013. Biofiltering of aquaculture effluents by halophytic plants: basic principles, current uses and future perspectives. Environmental and Experimental Botany 92: 122–133.CrossRefGoogle Scholar
  9. Burkholder, J.M., D. Tomasko, and B.W. Touchette. 2007. Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology 350: 46–72.CrossRefGoogle Scholar
  10. Buzzelli, C., P. Gorman, P.H. Doering, Z. Chen, and Y. Wan. 2015. The application of oyster and seagrass models to evaluate alternative inflow scenarios related to Everglades restoration. Ecological Modelling 297: 154–170.CrossRefGoogle Scholar
  11. Cabello-Pasini, A., R. Muniz-Salazar, and D.H. Ward. 2003. Annual variations of biomass and photosynthesis in Zostera marina at its southern end of distribution in the North Pacific. Aquatic Botany 76: 31–47.CrossRefGoogle Scholar
  12. Camacho-Ibar, V.F., J.D. Carriquiry, and S.V. Smith. 2003. Non-conservative P and N fluxes and net ecosystem production in San Quintín Bay, Mexico. Estuaries 26: 1220–1237.CrossRefGoogle Scholar
  13. Coplen, T.B. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report). Pure and Applied Chemistry 66(2): 273–276.CrossRefGoogle Scholar
  14. Cornelisen, C.D., and F.I.M. Thomas. 2004. Ammonium and nitrate uptake by leaves of the seagrass Thalassia testudinum: impact of hydrodynamic regime and epiphyte cover on uptake rates. Journal of Marine Systems 49: 177–194.CrossRefGoogle Scholar
  15. Dudley, B.J., A.M.E. Gahnstöm, and D.I. Walker. 2001. The role of benthic vegetation as a sink for elevated inputs of ammonium and nitrate in a mesotrophic estuary. Marine Ecology Progress Series 219: 99–107.CrossRefGoogle Scholar
  16. Dumbauld, B.R., and L.M. McCoy. 2015. Effect of oyster aquaculture on seagrass Zostera marina at the estuarine landscape scale in Willapa Bay, Washington (USA). Aquaculture Environmental Interactions 7: 29–47.CrossRefGoogle Scholar
  17. Evans, R.D. 2001. Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science 6: 121–26.CrossRefGoogle Scholar
  18. Everett, R.A., G.M. Ruiz, and J.T. Carleton. 1995. Effect of oyster mariculture on submerged aquatic vegetation: an experimental test in a Pacific Northwest estuary. Marine Ecology Progress Series 125: 205–217.CrossRefGoogle Scholar
  19. Forde, J., F.X. O’Beirn, J.P.C. O’Carroll, A. Patterson, and R. Kennedy. 2015. Impact of intertidal oyster trestle cultivation on the ecological status of benthic habitats. Marine Pollution Bulletin. doi: 10.1016/j.marpolbul.2015.04.013.Google Scholar
  20. Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbá, M. Holmer, et al. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505–509.CrossRefGoogle Scholar
  21. García-Esquivel, S., M.A. González-Gómez, F. Ley-Lou, and A. Mejía-Trejo. 2004. Oyster culture potential in the west arm of San Quintín Bay: current biomass and preliminary estimate of the carrying capacity. Ciencias Marinas 30: 61–74.Google Scholar
  22. Green, E. P., and F. T. Short. 2003. World atlas of seagrasses. University of California Press.Google Scholar
  23. Hasegawa, N., H. Iizumi, and H. Mukai. 2005. Nitrogen dynamics of the surfgrass Phyllospadix iwatensis. Marine Ecology Progress Series 293: 59–68.CrossRefGoogle Scholar
  24. Hemminga, M.A., and M.A. Mateo. 1996. Stable carbon isotopes in seagrasses: variability in rations and use in ecological studies. Marine Ecology Progress Series 140: 285–298.CrossRefGoogle Scholar
  25. Hemminga, M.A., B.P. Koutstaal, J. Van Soelen, and A.G.A.M. Merks. 1994. The nitrogen supply to intertidal eelgrass (Zostera marina L.). Marine Biology 118: 223–227.CrossRefGoogle Scholar
  26. Hemminga, M.A., N. Marbá, and J. Stapel. 1999. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems. Aquatic Botany 65: 141–158.CrossRefGoogle Scholar
  27. Hernández-Ayón, J.M., S. Galindo-Bect, V.F. Camacho-Ibar, S. García-Esquivel, M.A. González-Gómez, and F. Ley-Lou. 2004. Nutrient dynamics in the west arm of San Quintín Bay, Baja California, Mexico. Ciencias Marinas 30: 119–132.Google Scholar
  28. Hoellein, T.J., and C.B. Zarnoch. 2014. Effect of eastern oysters (Crassostrea virginica) on sediment carbon and nitrogen dynamics in an urban estuary. Ecological Applications 24: 271–286.CrossRefGoogle Scholar
  29. Iizumi, H., A. Hattori, and C.P. McRoy. 1982. Ammonium regeneration and assimilation in eelgrass (Zostera marina) beds. Marine Biology 66: 59–65.CrossRefGoogle Scholar
  30. Invers, O., J. Romero, and M. Pérez. 1997. Effects of pH on seagrass photosynthesis: a laboratory and field assessment. Aquatic Botany 59: 185–194.CrossRefGoogle Scholar
  31. Invers, O., G.P. Kraemer, M. Pérez, and J. Romero. 2004. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. Journal of Experimental Marine Biology and Ecology 303: 97–114.CrossRefGoogle Scholar
  32. Kellogg, M.L., A.R. Smyth, M.W. Luckenbach, R.H. Carmichael, B.L. Brown, J.C. Cornwell, M.F. Piehler, M.S. Owens, D.J. Dalrymple, and C.B. Higgins. 2014. Use of oysters to mitigate eutrophication in coastal waters. Estuarine, Coastal and Shelf Science 151: 156–168.CrossRefGoogle Scholar
  33. Kelly, J.R., and J.P. Volpe. 2007. Native eelgrass (Zostera marina L.) survival and growth adjacent to non-native oysters (Crassostrea gigas Thunberg) in the Strait of Georgia, British Columbia. Botanica Marina 50: 143–150.CrossRefGoogle Scholar
  34. Korhonen, L.K., V. Macías-Carranza, R. Abdala, F.L. Figueroa, and A. Cabello-Pasini. 2012. Effects of sulfide concentration, pH, and anoxia on photosynthesis and respiration of Zostera marina. Ciencias Marinas 38: 625–633.CrossRefGoogle Scholar
  35. Lee, K.-S., and K.H. Dunton. 1999. Inorganic nitrogen acquisition in the seagrass Thalassia testudinum: development of a whole-plant nitrogen budget. Limnology and Oceanography 44: 1204–1215.CrossRefGoogle Scholar
  36. Lepoint, G., S. Millet, P. Dauby, S. Gobert, and J.M. Bouquegneau. 2002. Annual nitrogen budget of the seagrass Posidonia oceanica as determined by in situ uptake experiments. Marine Ecology Progress Series 237: 87–96.CrossRefGoogle Scholar
  37. Lepoint, G., M. Fontaine, P. Dauby, S. Gobert, and J.M. Bouquegneau. 2003. Carbon and nitrogen isotopic ratios of the seagrass Posidonia oceanica: depth related variations. Botanica Marina 46: 555–561.CrossRefGoogle Scholar
  38. Maier, C.M., and A.M. Pregnall. 1990. Increased macrophyte nitrate reductase activity as a consequence of groundwater input of nitrate through sandy beaches. Marine Biology 107: 263–271.CrossRefGoogle Scholar
  39. Marbá, N., M.A. Hemminga, M.A. Mateo, C.M. Duarte, Y. Mass, J. Terrados, and E. Gacia. 2002. Carbon and nutrient translocation between seagrass ramets. Marine Ecology Progress Series 226: 287–300.CrossRefGoogle Scholar
  40. McGlathery, K.J. 2008. Seagrass habitats. In Nitrogen in the marine environment, ed. D. G. Capone, D. A. Bronk, M. R. Mulholland, and E. J. Carpenter, 1037–1060. Academic Press.Google Scholar
  41. McGlathery, K.J., K. Sundback, and I.C. Anderson. 2007. Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Marine Ecology Progress Series 348: 1–18.CrossRefGoogle Scholar
  42. Neori, A. 2008. Essential role of seaweed cultivation in integrated multi-trophic aquaculture farms for global expansion of mariculture: an analysis. Journal of Applied Phycology 20: 567–570.CrossRefGoogle Scholar
  43. Newell, R.I.E., T.R. Fisher, R.R. Holyoke, and J.C. Cornwell. 2005. Influence of Eastern oysters on nitrogen and phosphorus regeneration in Chesapeake Bay, USA. In The comparative roles of suspension feeders in ecosystems, NATO Series: IV e Earth and environmental sciences, ed. R. Dame and S. Olenin, 93–120. Springer.Google Scholar
  44. Olivé, I., J. Silva, M.M. Costa, and R. Santos. 2015. Estimating seagrass community metabolism using benthic chambers: the effect of incubation time. Estuaries and Coasts. doi: 10.1007/s12237-015-9973-z.Google Scholar
  45. Pedersen, M.F., and J. Borum. 1993. An annual nitrogen budget for a seagrass Zostera marina population. Marine Ecology Progress Series 101: 169–177.CrossRefGoogle Scholar
  46. Pedersen, M.F., E.I. Paling, and D.I. Walker. 1997. Nitrogen uptake and allocation in the seagrass Amphibolis antarctica. Aquatic Botany 56: 105–117.CrossRefGoogle Scholar
  47. Peterson, H., and K.L. Heck. 2001a. Positive interactions between suspension-feeding bivalves and seagrass—a facultative mutualism. Marine Ecology Progress Series 213: 143–155.CrossRefGoogle Scholar
  48. Peterson, H., and K.L. Heck. 2001b. An experimental test of the mechanism by which suspension feeding bivalves elevate seagrass productivity. Marine Ecology Progress Series 218: 115–125.CrossRefGoogle Scholar
  49. Pillay, T.V.R. 2004. Aquaculture and the environment. Wiley-Blackwell.Google Scholar
  50. Poumian-Tapia, M., and S.E. Ibarra-Obando. 1999. Demography and biomass of the seagrass Zostera marina in a Mexican coastal lagoon. Estuaries 22: 879–889.CrossRefGoogle Scholar
  51. Rasmusson, L.M., and M. Björk. 2014. Determining light suppression of mitochondrial respiration for three temperate marine macrophytes using the Kok method. Botanica Marina 57(6): 483–486.CrossRefGoogle Scholar
  52. Reusch, T.B.H., A.R.O. Chapman, and J.P. Gröger. 1994. Blue mussels Mytilus edulis do not interfere with eelgrass Zostera marina but fertilize shoot growth through biodepostion. Marine Ecology Progress Series 108: 265–282.CrossRefGoogle Scholar
  53. Ribas-Ribas, M., J.M. Hernández-Ayón, V.F. Camacho-Ibar, et al. 2011. Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuarine, Coastal and Shelf Science 95: 367–376.CrossRefGoogle Scholar
  54. Rubio, L., A. Linares-Rueda, M.J. García-Sánchez, and J.A. Fernández. 2007. Ammonium uptake kinetics in root and leaf cells of Zostera marina L. Journal of Experimental Marine Biology and Ecology 352(2): 271–279.CrossRefGoogle Scholar
  55. Ruiz, J.M., C. Marco-Méndez, and J.L. Sánchez-Lizaso. 2010. Remote influence of offshore fish farm waste on Mediterranean seagrass (Posidonia oceanica) meadows. Marine Environmental Research 69: 118–126.CrossRefGoogle Scholar
  56. Sandoval-Gil, J.M., V.F. Camacho-Ibar, M.C. Ávila-López, J. Hernández-López, J.A. Zertuche-González, and A. Cabello-Pasini. 2015. Dissolved inorganic nitrogen uptake kinetics and δ15N of Zostera marina L. (eelgrass) in a coastal lagoon with oyster aquaculture and upwelling influence. Journal of Experimental Marine Biology and Ecology 472: 1–13.CrossRefGoogle Scholar
  57. Sharma, S., J. Goff, R.M. Moody, D. Byron, K.L. Heck Jr., S.P. Powers, C. Ferraro, and J. Cebrian. 2016. Do restored oyster reefs benefit seagrasses? An experimental study in the Northern Gulf of Mexico. Restoration and Ecology. doi: 10.1111/rec.12329.Google Scholar
  58. Sharp, Z. 2005. Principles of stable isotope geochemistry. Prentice Hall.Google Scholar
  59. Short, F.T. 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiments. Aquatic Botany 27: 41–57.CrossRefGoogle Scholar
  60. Simenstad, C.A., and K.I. Fresh. 1995. Influence of intertidal aquaculture on benthic communities in Pacific Northwest estuaries: scales of disturbance. Estuaries 18: 43–70.CrossRefGoogle Scholar
  61. Skinner, M.A., S.C. Courtenay, C.W. McKindsey, C.E. Carver, and A.L. Mallet. 2014. Experimental determination of the effects of light limitation from suspended bag oyster (Crassostrea virginica) aquaculture on the structure and photosynthesis of eelgrass (Zostera marina). Journal of Experimental Marine Biology and Ecology 459: 169–180.CrossRefGoogle Scholar
  62. Stapel, J., and M.A. Hemminga. 1997. Nutrient resorption from seagrass leaves. Marine Biology 128(2): 197–206.CrossRefGoogle Scholar
  63. Stapel, J., T.L. Aarts, B.H.M. van Duynhoven, J.D. De Groot, P.H.W. van den Hoogen, and M.A. Hemminga. 1996. Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Marine Ecology Progress Series 134: 195–206.CrossRefGoogle Scholar
  64. Stapel, J., M.A. Hemminga, C.G. Bogert, and Y. E. Maas. 2001. Nitrogen (δ15N) retention in small Thalassia hemprichii seagrass plots in an offshore meadow in South Sulawesi, Indonesia. Limnology and Oceanography 46(1): 24–37Google Scholar
  65. Tallis, H.M., J.L. Ruesink, B. Dumbauld, S. Hacker, and L.M. Wisehart. 2009. Oysters and aquaculture practices affect eelgrass density and productivity in a Pacific Northwest estuary. Journal of Shellfish Research 28: 251–261.CrossRefGoogle Scholar
  66. Terrados, J., and S.L. Williams. 1997. Leaf versus root nitrogen uptake by the surfgrass Phyllospadix torreyi. Marine Ecology Progress Series 149: 267–277.CrossRefGoogle Scholar
  67. Touchette, B.W., and J.M. Burkholder. 2000. Review of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology 250: 133–167.CrossRefGoogle Scholar
  68. Touchette, B.W., and J.M. Burkholder. 2007. Carbon and nitrogen metabolism in the seagrass, Zostera marina L.: environmental control of enzymes involved in carbon allocation and nitrogen assimilation. Journal of Experimental Marine Biology and Ecology 350: 216–233.CrossRefGoogle Scholar
  69. Vinther, H.F., and M. Holmer. 2008. Experimental test of biodeposition and ammonium excretion from blue mussels (Mytilus edulis) on eelgrass (Zostera marina) performance. Journal of Experimental Marine Biology and Ecology 364: 72–79.CrossRefGoogle Scholar
  70. Vinther, H.F., J.S. Laursen, and M. Holmer. 2008. Negative effects of blue mussel (Mytilus edulis) presence in eelgrass (Zostera marina) beds in Flensborg fjord, Denmark. Estuarine, Coastal and Shelf Science 77: 91–103.CrossRefGoogle Scholar
  71. Vonk, J.A., J.J. Middelburg, J. Stapel, and T.J. Bouma. 2008. Dissolved organic nitrogen uptake by seagrasses. Limnology and Oceanography 53(2): 542–548.CrossRefGoogle Scholar
  72. Wagner, E., B.R. Dumbauld, S.D. Hacker, A.C. Trimble, L.M. Wisehart, and J.L. Ruesink. 2012. Density-dependent effects of an introduced oyster, Crassostrea gigas, on a native intertidal seagrass, Zostera marina. Marine Ecology Progress Series 468: 149–160.CrossRefGoogle Scholar
  73. Ward, D.H., A. Morton, T.L. Tibbitts, D.C. Douglas, and E. Carrera-González. 2003. Long-term change in eelgrass distribution at Bahía San Quintín, Baja California, Mexico, using satellite imagery. Estuaries 26: 1529–1539.CrossRefGoogle Scholar
  74. Wisehart, L.M., B.R. Dumbauld, J.L. Ruesink, and S.D. Hacker. 2007. Importance of eelgrass early life history stages in response to oyster aquaculture disturbance. Marine Ecology Progress Series 344: 71–80.CrossRefGoogle Scholar
  75. Yamamuro, M., Y. Umezawa, and I. Koike. 2004. Internal variations in nutrient concentrations and the C and N stable isotope ratios in leaves of the seagrass Enhalus acoroides. Aquatic Botany 79(1): 95–102.CrossRefGoogle Scholar
  76. Zertuche-González, J., V.F. Camacho-Ibar, I. Pacheco-Ruíz, A. Cabello-Pasini, L. Galindo-Bect, J. Guzmán-Calderón, V. Macías-Carranza, and J. Espinoza-Avalos. 2009. The role of Ulva spp. as a temporary nutrient sink in a coastal lagoon with oyster cultivation and upwelling influence. Journal of Applied Phycology 21: 729–736.CrossRefGoogle Scholar
  77. Zieman, J.C. 1984. Methods for the study of the growth and production of turtle grass Thalassia testudinum König. Aquaculture 4: 139–143.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  • Jose Sandoval-Gil
    • 1
  • Ana Alexandre
    • 2
  • Rui Santos
    • 2
  • Víctor F. Camacho-Ibar
    • 1
    Email author
  1. 1.Instituto de Investigaciones Oceanológicas (IIO)Universidad Autónoma de Baja California (UABC)EnsenadaMexico
  2. 2.Marine Plant Ecology Research Group, Centre of Marine Sciences (CCMAR), Faculdade de Ciências e TecnologiaUniversidade do AlgarveGambelasPortugal

Personalised recommendations