Estuaries and Coasts

, Volume 39, Issue 4, pp 951–966 | Cite as

Mechanisms of Storm-Related Loss and Resilience in a Large Submersed Plant Bed

  • Cassie GurbiszEmail author
  • W. Michael Kemp
  • Lawrence P. Sanford
  • Robert J. Orth


There is a growing emphasis on preserving ecological resilience, or a system’s capacity to absorb or recover quickly from perturbations, particularly in vulnerable coastal regions. However, the factors that affect resilience to a given disturbance are not always clear and may be system-specific. We analyzed and synthesized time series datasets to explore how extreme events impacted a large system of submersed aquatic vegetation (SAV) in upper Chesapeake Bay and to identify and understand associated mechanisms of resilience. We found that physical removal of plants around the edge of the bed by high flows during a major flood event as well as subsequent wind-driven resuspension of newly deposited sediment and attendant light-limiting conditions were detrimental to the SAV bed. Conversely, it appears that the bed attenuated high flows sufficiently to prevent plant erosion at its inner core. The bed also attenuated wind-driven wave amplitude during seasonal peaks in plant biomass, thereby decreasing sediment resuspension and increasing water clarity. In addition, clear water appeared to “spill over” into adjacent regions during ebb tide, improving the bed’s capacity for renewal by creating more favorable growing conditions in areas where plant loss had occurred. These analyses demonstrate that positive feedback processes, whereby an SAV bed modifies its environment in ways that improve its own growth, likely serve as mechanisms of SAV resilience to flood events. Although this work focuses on a specific system, the synthetic approach used here can be applied to any system for which routine monitoring data are available.


Submersed aquatic vegetation Storm Flood Feedbacks Resilience 



We thank Debbie Hinkle, Steve Suttles, Laura Murray, and Steven Di Falco for help collecting samples; Viacheslav Lyubchich for guidance on statistical methods; Keith Williams and staff from NorthBay Adventure for field support; and two anonymous reviewers for constructive comments on an earlier version of the manuscript. WML, LPS, and CG received support to carry out this research from Maryland Sea Grant under awards NA10OAR4170072 R/SV-1 and NA14OAR4170090 R/SD-1 from the National Oceanic and Atmospheric Administration, U. S. Department of Commerce. This paper is contribution no. 5167 of the University of Maryland Center for Environmental Science Horn Point Laboratory and 3518 of the Virginia Institute of Marine Science, The College of William and Mary.

Supplementary material

12237_2016_74_MOESM1_ESM.pdf (314 kb)
ESM 1 (PDF 314 kb)


  1. Alcoverro, T., R.C. Zimmerman, D.G. Kohrs, and R.S. Alberte. 1999. Resource allocation and sucrose mobilization in light-limited eelgrass Zostera marina. Marine Ecology Progress Series 187: 121–131. doi: 10.3354/meps187121.CrossRefGoogle Scholar
  2. Allen, J.R.L. 1985. Principles of physical sedimentology. London: George Allen & Unwin Ltd.CrossRefGoogle Scholar
  3. Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193. doi: 10.1890/10-1510.1.CrossRefGoogle Scholar
  4. Bartoli, M., D. Nizzoli, G. Castaldelli, and P. Viaroli. 2008. Community metabolism and buffering capacity of nitrogen in a Ruppia cirrhosa meadow. Journal of Experimental Marine Biology and Ecology 360: 21–30. doi: 10.1016/j.jembe.2008.03.005.CrossRefGoogle Scholar
  5. Bayley, S., V.D. Stotts, P.F. Springer, and J. Steenis. 1978. Changes in submerged aquatic macrophyte populations at the head of Chesapeake Bay, 1958–1975. Estuaries 1: 171–182.CrossRefGoogle Scholar
  6. Blackburn, R.D., J.M. Lawrence, and D.E. Davis. 1961. Effects of light intensity and quality on the growth of Elodea densa and Heteranthera dubia. Weeds 9: 251–257.CrossRefGoogle Scholar
  7. Cabaço, S., R. Santos, and C.M. Duarte. 2008. The impact of sediment burial and erosion on seagrasses: a review. Estuarine, Coastal and Shelf Science 79: 354–366. doi: 10.1016/j.ecss.2008.04.021.CrossRefGoogle Scholar
  8. Cabello-Pasini, A., C. Lara-Turrent, and R.C. Zimmerman. 2002. Effect of storms on photosynthesis, carbohydrate content and survival of eelgrass populations from a coastal lagoon and the adjacent open ocean. Aquatic Botany 74: 149–164. doi: 10.1016/S0304-3770(02)00076-1.CrossRefGoogle Scholar
  9. Caffrey, J.M., and W.M. Kemp. 1990. Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliatus and Zostera marina. Marine Ecology Progress Series 66: 147–160.CrossRefGoogle Scholar
  10. Caffrey, J.M., M.C. Murrell, K.S. Amacker, J.W. Harper, S. Phipps, and M.S. Woodrey. 2014. Seasonal and inter-annual patterns in primary production, respiration, and net ecosystem metabolism in three estuaries in the northeast Gulf of Mexico. Estuaries and Coasts 37(51): 222–241.CrossRefGoogle Scholar
  11. Campbell, S., and L.J. McKenzie. 2004. Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Estuarine, Coastal and Shelf Science 60: 477–490. doi: 10.1016/j.ecss.2004.02.007.CrossRefGoogle Scholar
  12. Cardoso, P.G., D. Rafaelli, A.I. Lillebø, T. Verdelhos, and M.A. Pardal. 2008. The impact of extreme flooding events and anthropogenic stressors on the macrobenthic communities’ dynamics. Estuarine, Coastal and Shelf Science 76: 353–365.CrossRefGoogle Scholar
  13. Carpenter, S.R., N.F. Caraco, D.L. Correll, R.W. Howarth, V.H. Sharpley, and V.H. Smith. 1998. Nonpoint pollution of surface waters with phosphorous and nitrogen. Ecological Applications 8: 559–568.CrossRefGoogle Scholar
  14. Carpenter, S.R., E.V. Armbrust, P.W. Arzerberger, S.F. Chapin III, J.J. Elser, E.J. Hackett, A.R. Ives, P.M. Kareiva, M.A. Leibold, P. Lundberg, M. Mangel, N. Merchant, W.W. Murdoch, M.A. Palmer, D.P.C. Peters, S.T.A. Pickett, K.K. Smith, D.H. Wall, and A.S. Zimmerman. 2009. Accelerate synthesis in ecology and environmental sciences. BioScience 59(8): 699–701.CrossRefGoogle Scholar
  15. Chen, S., L.P. Sanford, E.W. Koch, F. Shi, and E.W. North. 2007. A nearshore model to investigate the effects of seagrass bed geometry on wave attenuation and suspended sediment transport. Estuaries and Coasts 30: 296–310.CrossRefGoogle Scholar
  16. Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253. doi: 10.3354/meps210223.CrossRefGoogle Scholar
  17. Cornelisen, C., and F. Thomas. 2006. Water flow enhances ammonium and nitrate uptake in a seagrass community. Marine Ecology Progress Series 312: 1–13. doi: 10.3354/meps312001.CrossRefGoogle Scholar
  18. Costanza, R., R. D’Arge, R. DeGroot, S. Farber, M. Grasso, B. Hannon, K. Limbrug, S. Naeem, R.V. O’Neil, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.CrossRefGoogle Scholar
  19. De Boer, W.F. 2007. Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591: 5–24. doi: 10.1007/s10750-007-0780-9.CrossRefGoogle Scholar
  20. Dennison, W.C., R.J. Orth, K.A. Moore, J.C. Stevenson, V. Carter, S. Kollar, P.W. Bergstrom, and R.A. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation: habitat requirements as barometers of Chesapeake Bay health. BioScience 43: 86–94.CrossRefGoogle Scholar
  21. Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929. doi: 10.1126/science.1156401.CrossRefGoogle Scholar
  22. Duffy, J.E., P.L. Reynolds, C. Bostrom, J.A. Coyer, M. Cusson, S. Donadi, J.G. Douglass, J.S. Eklof, A.H. Engelen, B.K. Eriksson, S. Fredriksen, L. Gamfeldt, C. Gustafsson, G. Hoarau, M. Hori, K. Hovel, K. Iken, J.S. Lefcheck, P. Moksnes, M. Nakaoka, M.I. O’Connor, J. Olsen, J.P. Richardson, J.L. Ruesink, E.E. Sotka, J. Thormar, M.A. Whalen, and J.J. Stachowicz. 2015. Biodiversity mediates top-down control in eelgrass ecosystems: a global comparative-experimental approach. Ecology Letters 19(7): 696–705. doi: 10.1111/ele.12448.CrossRefGoogle Scholar
  23. Efron, B. 1987. Better bootstrap confidence intervals. Journal of the American Statistical Association 82(397): 171–185.CrossRefGoogle Scholar
  24. Fagherazzi, S., P.L. Wiberg, and A.D. Howard. 2003. Tidal flow field in a small basin. Journal of Geophysical Research 108: 1–10. doi: 10.1029/2002JC001340.CrossRefGoogle Scholar
  25. Folke, C. 2006. Resilience: the emergence of a perspective for social–ecological systems analyses. Global Environmental Change 16: 253–267. doi: 10.1016/j.gloenvcha.2006.04.002.CrossRefGoogle Scholar
  26. Fonseca, M.S., and S.S. Bell. 1998. Influence of physical setting on seagrass landscapes. Marine Ecology Progress Series 171: 109–121.CrossRefGoogle Scholar
  27. Fonseca, M. S., J. S. Fisher, J. C. Zieman, and G. W. Thayer. 1982. Influence of the seagrass, Zostera marina L., on current flow. Estuarine, Coastal and Shelf Science 15: 351–364. doi: 10.1016/0272-7714(82)90046-4.
  28. Fraser, M.W., G.A. Kendrick, J. Statton, R.K. Hovey, A. Zavala-Perez, and D.I. Walker. 2014. Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. Jounal of Ecology 102: 1528–1536. doi: 10.1111/1365-2745.12300.CrossRefGoogle Scholar
  29. Gambi, M.C., A.R.M. Nowell, and P.A. Jumars. 1990. Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Marine Ecology Progress Series 61: 159–169. doi: 10.3354/meps061159.CrossRefGoogle Scholar
  30. Granata, T., T. Serra, J. Colomer, X. Casamitjana, C.M. Duarte, and E. Gacia. 2001. Flow and particle distributions in a nearshore seagrass meadow before and after a storm. Marine Ecology Progress Series 218: 95–106. doi: 10.3354/meps218095.CrossRefGoogle Scholar
  31. Grilo, T.F., P.G. Cardoso, M. Dolbeth, M.D. Bordalo, and M.A. Pardal. 2011. Effects of extreme climate events on the macrobenthic communities’ structure and functioning of a temperate estuary. Marine Pollution Bulletin 62(2): 303–311. doi: 10.1016/j.marpolbul.2010.10.010.CrossRefGoogle Scholar
  32. Gruber, R.K., and W.M. Kemp. 2010. Feedback effects in a coastal canopy-forming submersed plant bed. Limnology and Oceanography 55: 2285–2298. doi: 10.4319/lo.2010.55.6.2285.CrossRefGoogle Scholar
  33. Gruber, R.K., D.C. Hinkle, and W.M. Kemp. 2011. Spatial patterns in water quality associated with submersed plant beds. Estuaries and Coasts 34: 961–972. doi: 10.1007/s12237-010-9368-0.CrossRefGoogle Scholar
  34. Gurbisz, C., and W.M. Kemp. 2014. Unexpected resurgence of a large submersed plant bed in Chesapeake Bay: analysis of time series data. Limnology and Oceanography 59: 482–494. doi: 10.4319/lo.2014.59.2.0482.CrossRefGoogle Scholar
  35. Harley, M.T., and S. Findlay. 1994. Photosynthesis-irradiance relationships for three species of submersed macrophytes in the tidal freshwater Hudson River. Estuaries 17: 200–205.CrossRefGoogle Scholar
  36. Hosmer, D.W., and S. Lemeshow. 2000. Applied logistic regression. New York: John Wiley & Sons, Inc.CrossRefGoogle Scholar
  37. Howarth, R.W., M. Hayn, R.M. Marino, N. Ganju, K. Foreman, K. McGlathery, A.E. Giblin, P. Berg, and J.D. Walker. 2013. Metabolism of a nitrogen-enriched coastal marine lagoon during the summertime. Biogeochemistry 118: 1–20. doi: 10.1007/s10533-013-9901-x.CrossRefGoogle Scholar
  38. Intergovernmental Panel on Climate Change (IPCC), 2014. Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp.Google Scholar
  39. Jackson, J.B., M.X. Kirby, W.H. Berger, K.A. Bjorndal, L.W. Botsford, B.J. Bourque, R.H. Bradbury, R. Cooke, J. Erlandson, J.A. Estes, T. Pl Hughes, S. Kidwell, C.B. Lange, H.S. Lenihan, J.M. Pandolfi, C.H. Peterson, R.S. Steneck, M.J. Tegner, and R.R. Warner. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629–637. doi: 10.1126/science.1059199.CrossRefGoogle Scholar
  40. Kemp, W.M., and W.R. Boynton. 2011. Synthesis in estuarine and coastal ecological research: what is it, why is it important, and how do we teach it? Estuaries and Coasts 35(1): 1–22.CrossRefGoogle Scholar
  41. Kemp, W.M., W.R. Boynton, R.R. Twilley, J.C. Stevenson, and L.G. Ward. 1984. Influences of submersed vascular plants on ecological processes in upper Chesapeake Bay. In The estuary as a filter, ed. V.S. Kennedy, 367–394. New York: Academic Press, Inc.CrossRefGoogle Scholar
  42. Kemp, W.M., R. Batiuk, R. Bartleson, P. Bergstrom, V. Carter, C.L. Gallegos, W. Hunley, L. Karrh, E.W. Koch, J.M. Landwher, K.A. Moore, L. Murray, M. Naylor, N.B. Rybicki, J.C. Stevenson, and D.J. Wilcox. 2004. Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: water quality, light regime, and physical-chemical factors. Estuaries 27: 363–377.CrossRefGoogle Scholar
  43. Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, P.M. Glibert, J.D. Hagy, L.W. Harding, E.D. Houde, D.G. Kimmel, W.D. Miller, R.I.E. Newell, M.R. Roman, E.M. Smith, and J.C. Stevenson. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.CrossRefGoogle Scholar
  44. Koch, E.W. 2001. Beyond light: Physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17.CrossRefGoogle Scholar
  45. Laird, N.M., and J.H. Ware. 1982. Random-effects models for longitudinal data. Biometrics 38: 963–974.CrossRefGoogle Scholar
  46. Lande, R., and S. Shannon. 1996. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50: 434–437.CrossRefGoogle Scholar
  47. Lara, M., G. Peralta, J.J. Alonso, E.P. Morris, V. González-Ortiz, J.J. Rueda-Márquez, and J.L. Pérez-Lloréns. 2012. Effects of intertidal seagrass habitat fragmentation on turbulent diffusion and retention time of solutes. Marine Pollution Bulletin 64: 2471–2479. doi: 10.1016/j.marpolbul.2012.07.044.CrossRefGoogle Scholar
  48. Longstaff, B.J., and W.C. Dennison. 1999. Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquatic Botany 65: 105–121. doi: 10.1016/S0304-3770(99)00035-2.CrossRefGoogle Scholar
  49. Lotze, H., H.S. Lenihan, B.J. Borque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312(5781): 1806–1809.CrossRefGoogle Scholar
  50. Luhar, M., and H.M. Nepf. 2013. From the blade scale to the reach scale: a characterization of aquatic vegetative drag. Advances in Water Resources 51: 305–316. doi: 10.1016/j.advwatres.2012.02.002.CrossRefGoogle Scholar
  51. Luhar, M., J. Rominger, and H. Nepf. 2008. Interaction between flow, transport and vegetation spatial structure. Environmental Fluid Mechanics 8: 423–439. doi: 10.1007/s10652-008-9080-9.CrossRefGoogle Scholar
  52. Madsen, J.D., P.A. Chambers, W.F. James, E.W. Koch, and D.F. Westlake. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.CrossRefGoogle Scholar
  53. Malone, T.C., D.J. Conley, T.R. Fisher, P.M. Glibert, L.W. Harding, and K.G. Sellner. 1996. Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay. Estuaries and Coasts 19(2b): 371–385.CrossRefGoogle Scholar
  54. Mariotti, G., and S. Fagherazzi. 2013. A two-point dynamic model for the coupled evolution of channels and tidal flats. Journal of Geophysical Research, Earth Surface 118: 1387–1399. doi: 10.1002/jgrf.20070.CrossRefGoogle Scholar
  55. Maxwell, P.S., K.A. Pitt, D.D. Burfeind, A.D. Olds, R.C. Babcock, and R.M. Connolly. 2014. Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding. Journal of Ecology 102: 54–64. doi: 10.1111/1365-2745.12167.CrossRefGoogle Scholar
  56. McFarland, D.G., and D.J. Shafer. 2008. Factors influencing reproduction in American wild celery: a synthesis. Journal of Aquatic Plant Management 46: 129–144.Google Scholar
  57. McGlathery, K.J., K. Sundbäck, and I.C. Anderson. 2007. Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Marine Ecology Progress Series 348: 1–18. doi: 10.3354/meps07132.CrossRefGoogle Scholar
  58. Middelboe, A.L., and S. Markager. 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37: 553–568.CrossRefGoogle Scholar
  59. Moore, K.A. 2004. Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. Journal of Coastal Research 45: 162–178.CrossRefGoogle Scholar
  60. Moore, K.A., Richard L. Wetzel, and Robert J. Orth. 1997. Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary. Journal of Experimental Marine Biology and Ecology 215: 115–134. doi: 10.1016/S0022-0981(96)02774-8.CrossRefGoogle Scholar
  61. Moore, K.A., D.J. Wilcox, and R.J. Orth. 2000. Analysis of the abundance of submersed aquatic vegetation communities in the Chesapeake Bay. Estuaries 23(1): 115–127.CrossRefGoogle Scholar
  62. Najjar, R.G., C.R. Pyke, M.B. Adams, D. Breitburg, C. Hershner, W.M. Kemp, R. Howarth, M.R. Mulholland, M. Paolisso, D. Secor, K. Sellner, D. Wardrop, and R. Wood. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86: 1–20. doi: 10.1016/j.ecss.2009.09.026.CrossRefGoogle Scholar
  63. Nixon, S.W., J.W. Ammerman, L.P. Atkinson, V.M. Berounsky, G. Billen, W.C. Boicourt, W.R. Boynton, T.M. Church, D.M. Ditoro, R. Elmgren, H.J. Garber, A.E. Giblin, R.A. Jahnke, N.J.P. Owens, M.E.Q. Pilson, and S.P. Seitzinger. 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35: 141–180.CrossRefGoogle Scholar
  64. Orth, R.J., M.L. Luckenbach, S.R. Marion, K.A. Moore, and D.J. Wilcox. 2006. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquatic Botany 84(1): 26–36.CrossRefGoogle Scholar
  65. Orth, R.J., M.R. Williams, S.R. Marion, D.J. Wilcox, T.J.B. Carruthers, K.A. Moore, W.M. Kemp, W.C. Dennison, N. Rybicki, P. Bergstrom, and R.A. Bauiuk. 2010. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality. Estuaries and Coasts 33: 1144–1163. doi: 10.1007/s12237-010-9311-4.CrossRefGoogle Scholar
  66. Orth, R.J., K.A. Moore, S.R. Marion, D.J. Wilcox, and D.B. Parrish. 2012. Seed addition facilitates eelgrass recovery in a coastal bay system. Marine Ecology Progress Series 448: 177–195.CrossRefGoogle Scholar
  67. Palinkas, C.M., J.P. Halka, M. Li, L.P. Sanford, and P. Cheng. 2013. Sediment deposition from tropical storms in the upper Chesapeake Bay: field observations and model simulations. Continental Shelf Research 86: 6–16. doi: 10.1016/j.csr.2013.09.012.CrossRefGoogle Scholar
  68. Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press.Google Scholar
  69. Peterson, C.H., R.A. Luettich Jr., F. Micheli, and G.A. Skilleter. 2004. Attenuation of water flow inside seagrass canopies of differing structure. Marine Ecology Progress Series 268: 81–92.CrossRefGoogle Scholar
  70. Pinheiro, J.C., and D.M. Bates. 2000. Mixed effects models in S and S-Plus. New York: Springer-Verlag.CrossRefGoogle Scholar
  71. Preen, A. R., W. J. Lee Long, and R. G. Coles. 1995. Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquatic Botany 52. Elsevier: 3–17. doi: 10.1016/0304-3770(95)00491-H.
  72. Ralph, G.M., R.D. Seitz, R.J. Orth, K.E. Knick, and R.N. Lipcius. 2013. Broad-scale association between seagrass cover and juvenile blue crab density in Chesapeake Bay. Marine Ecology Progress Series 488: 51–63. doi: 10.3354/meps10417.CrossRefGoogle Scholar
  73. Rappaport, D.J., and W.G. Whitford. 1999. How ecosystems respond to stress. Bioscience 49: 193–203. doi: 10.2307/1313509.CrossRefGoogle Scholar
  74. Reusch, T.B.H., A. Ehlers, A. Hämmerli, and B. Worm. 2005. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America 102: 2826–2831. doi: 10.1073/pnas.0500008102.CrossRefGoogle Scholar
  75. Risgaard-Petersen, N., L. Ditlev, and M. Ottosen. 2000. Nitrogen cycling in two temperate Zostera marina beds: seasonal variation. Marine Ecology Progress Series 198: 93–107.CrossRefGoogle Scholar
  76. Romero, J., K.S. Lee, M. Perez, M.A. Mateo, and T. Alcoverro. 2006. Nutrient dynamics in seagrass ecosystems. In Seagrasses: biology, ecology, and conservation, ed. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 227–254. The Netherlands: Springer.Google Scholar
  77. Rybicki, N.B., and J.M. Landwehr. 2007. Long-term changes in abundance and diversity of macrophyte and waterfowl populations in an estuary with exotic macrophytes and improving water quality. Limnology and Oceanography 52(3): 1195–1207.CrossRefGoogle Scholar
  78. Sanford, L.P. 1994. Wave-forced resuspension of upper Chesapeake Bay muds. Estuaries 17: 148–165. doi: 10.1007/BF02694911.CrossRefGoogle Scholar
  79. Sanford, L.P. 2008. Modeling a dynamically varying mixed sediment bed with erosion, deposition, bioturbation, consolidation, and armoring. Computers & Geosciences 34: 1263–1283.CrossRefGoogle Scholar
  80. Scheffer, M., S.H. Hosper, M.L. Meijer, B. Moss, and E. Jeppesen. 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  81. Schubel, J.R., and D.W. Pritchard. 1986. Responses of upper Chesapeake Bay to variations in discharge of the Susquehanna River. Estuaries 9: 236–249.CrossRefGoogle Scholar
  82. Schutten, J., J. Dainty, and A.J. Davy. 2005. Root anchorage and its significance for submerged plants in shallow lakes. Journal of Ecology 93: 556–571. doi: 10.1111/j.1365-2745.2005.00980.x.CrossRefGoogle Scholar
  83. Sculthorpe, C.D. 1967. The biology of aquatic vascular plants. London: Edward Arnold.Google Scholar
  84. Ståhlberg, C., D. Bastviken, B.H. Svensson, and L. Rahm. 2006. Mineralisation of organic matter in coastal sediments at different frequency and duration of resuspension. Estuarine, Coastal and Shelf Science 70: 317–325. doi: 10.1016/j.ecss.2006.06.022.CrossRefGoogle Scholar
  85. Tengberg, A., E. Almroth, and P. Hall. 2003. Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: In situ measurements using new experimental technology. Journal of Experimental Marine Biology and Ecology 285–286: 119–142. doi: 10.1016/S0022-0981(02)00523-3.CrossRefGoogle Scholar
  86. Tomasko, D.A., C.A. Corbett, H.S. Greening, and G.E. Raulerson. 2005. Spatial and temporal variation in seagrass coverage in Southwest Florida: assessing the relative effects of anthropogenic nutrient load reductions and rainfall in four contiguous estuaries. Marine Pollution Bulletin 50: 797–805. doi: 10.1016/j.marpolbul.2005.02.010.CrossRefGoogle Scholar
  87. Twilley, R.R., W.M. Kemp, K.W. Staver, J.C. Stevenson, and W.R. Boynton. 1983. Nutrient enrichment of estuarine submersed vascular plant communities. 1. Algal growth and effects on production of plants and associated communities. Marine Ecology Progress Series 23: 179–191.CrossRefGoogle Scholar
  88. Van der Heide, T., E.H. van Nes, M.M. van Katwijk, H. Olff, and A.J.P. Smolders. 2011. Positive feedbacks in seagrass ecosystems—evidence from large-scale empirical data. PloS One 6, e16504. doi: 10.1371/journal.pone.0016504.CrossRefGoogle Scholar
  89. Walker, D.I., G.A. Kendrick, and A.J. McComb. 2006. Decline and recovery of seagrass ecosystems—the dynamics of change. In Seagrasses: biology, ecology, and conservation, ed. A. Larkum, R.J. Orth, and C. Duarte, 551–565. The Netherdlands: Springer.Google Scholar
  90. Wang, P., and L. C. Linker. 2005. Effect of timing of extreme storms on Chesapeake Bay submerged aquatic vegetation. In Hurricane Isabel in perspective, ed. K. G. Sellner, Edgewater, MD: Chesapeake Research Consortium Publication 05–160.Google Scholar
  91. Ward, L.G. 1985. The influence of wind waves and tidal currents on sediment resuspension in middle Chesapeake Bay. Geo-Marine Letters 5: 71–75.CrossRefGoogle Scholar
  92. Yaakub, S.M., E. Chen, T.J. Bouma, P.L.A. Erftemeijer, and P.A. Todd. 2014. Chronic light reduction reduces overall resilience to additional shading stress in the seagrass Halophila ovalis. Marine Pollution Bulletin 83: 467–474. doi: 10.1016/j.marpolbul.2013.11.030.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2016

Authors and Affiliations

  • Cassie Gurbisz
    • 1
    Email author
  • W. Michael Kemp
    • 1
  • Lawrence P. Sanford
    • 1
  • Robert J. Orth
    • 2
  1. 1.University of Maryland Center for Environmental Science Horn Point LaboratoryCambridgeUSA
  2. 2.Virginia Institute of Marine ScienceCollege of William and MaryGloucester PointUSA

Personalised recommendations