Skip to main content

The Declining Role of Organic Matter in New England Salt Marshes

Abstract

The Northeast USA is experiencing severe impacts of a changing climate, including increased winter temperatures and accelerated relative sea level rise (RSLR). The sediment-poor, organic-rich nature of many Southern New England salt marshes makes them particularly vulnerable to these changes. In order to assess how marsh accretion has changed over time, we returned to Narragansett Bay, RI where salt marsh vertical accretion rates were documented almost 30 years ago. Using radionuclide tracers (210Pb and 137Cs), we observe no significant change in overall accretion rates (0.27–0.69 cm year−1) compared to historical averages (0.24–0.60 cm year−1), but we document a shift in how these marshes maintain elevation. Organic matter now plays a smaller role in contributing to vertical accretion across all study sites, declining by 22 % on average. We attribute this reduction to potentially higher decomposition rates fueled by higher water temperature. Inorganic matter also contributes less to accretion (declining by 44 % on average at marshes located more internal to the estuary), likely due to diminishing sediment supply in this region. With organic and inorganic solids accounting for less of the total accretion, several of the marshes are experiencing symptoms of swelling, with water and porespace contributing more towards accretion compared to historical values. Accretion rates (0.27–0.45 cm year−1) at these organic-rich (>40 % sediment organic matter) marshes are predominantly lower than the current (30 years) rate of RSLR (0.41 ± 0.07 cm year−1). These results, combined with the increased rate of RSLR and the hardened shorelines inhibiting landward migration, call into question the long-term survivability of these marshes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Allen, J. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews 19: 1155–1231.

    Article  Google Scholar 

  • Anisfeld, S.C., and T.D. Hill. 2012. Fertilization effects on elevation change and belowground carbon balance in a Long Island Sound tidal marsh. Estuaries and Coasts 35: 201–211.

    CAS  Article  Google Scholar 

  • Appleby, P.G., and F. Oldfield. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5: 1–8.

    CAS  Article  Google Scholar 

  • Bertness, M.D., C.P. Brisson, M.C. Bevil, and S.M. Crotty. 2014. Herbivory drives the spread of salt marsh die-off. PLoS ONE 9, e92916.

    Article  Google Scholar 

  • Borkman, D.G., and T.J. Smayda. 1998. Long-term trends in water clarity revealed by Secchi-disk measurements in lower Narragansett Bay. ICES Journal of Marine Science: Journal du Conseil 55: 668–679.

    Article  Google Scholar 

  • Bricker-Urso, S., S.W. Nixon, J.K. Cochran, D.J. Hirschberg, and C. Hunt. 1989. Accretion rates and sediment accumulation in Rhode Island salt marshes. Estuaries 12: 300–317.

    CAS  Article  Google Scholar 

  • Cahoon, D.R. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts 29: 889–898.

    Article  Google Scholar 

  • Carey, J.C., and R.W. Fulweiler. 2014. Silica uptake by Spartina—evidence of multiple modes of accumulation from salt marshes around the world. Frontiers in Plant Science 5: 186.

    Article  Google Scholar 

  • Charles, H., and J.S. Dukes. 2009. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecological Applications 19: 1758–1773.

    Article  Google Scholar 

  • Cochran, J.K., D.J. Hirschberg, J. Wang, and C. Dere. 1998. Atmospheric deposition of metals to coastal waters (Long Island Sound, New York U.S.A.): evidence from saltmarsh deposits. Estuarine, Coastal and Shelf Science 46: 503–522.

    CAS  Article  Google Scholar 

  • Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo, and M. Machmuller. 2008. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7: 73–78.

    Article  Google Scholar 

  • Crutzen, P.J. 2002. Geology of mankind. Nature 415: 23–23.

    CAS  Article  Google Scholar 

  • Daily, G.C., S. Alexander, P.R. Ehrlich, L. Goulder, J. Lubchenco, P.A. Matson, H.A. Mooney, S. Postel, S.H. Schneider, and D. Tilman. 1997. Ecosystem services: benefits supplied to human societies by natural ecosystems. Washington: Ecological Society of America.

    Google Scholar 

  • D’Alpaos, A., S.M. Mudd, and L. Carniello. 2011. Dynamic response of marshes to perturbations in suspended sediment concentrations and rates of relative sea level rise. Journal of Geophysical Research, Earth Surface 116, F04020.

    Google Scholar 

  • Darby, F.A., and R.E. Turner. 2008. Effects of eutrophication on salt marsh root and rhizome biomass accumulation. Marine Ecology Progress Series 363: 63–70.

    Article  Google Scholar 

  • de Groot, R.S., M.A. Wilson, and R.M.J. Boumans. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41: 393–408.

    Article  Google Scholar 

  • Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490: 388–392.

    CAS  Article  Google Scholar 

  • Delaune, R.D., W.H. Patrick, and R.J. Buresh. 1978. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275: 532–533.

    CAS  Article  Google Scholar 

  • Delaune, R.D., R.H. Baumann, and J.G. Gosselink. 1983. Relationships among vertical accretion, coastal submergence,and erosion in a Louisiana Gulf Coast marsh. Journal of Sedimentary Petrology 53:147–157.

  • Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences 98: 14218–14223.

    CAS  Article  Google Scholar 

  • Foster, I.D., T. Mighall, H. Proffitt, D. Walling, and P. Owens. 2006. Post-depositional 137Cs mobility in the sediments of three shallow coastal lagoons, SW England. Journal of Paleolimnology 35: 881–895.

    Article  Google Scholar 

  • Fulweiler, R.W., and S.W. Nixon. 2009. Responses of benthic-pelagic coupling to climate change in a temperate estuary eutrophication in coastal ecosystems. ed. J.H. Andersen and D.J. Conley, 147–156: Springer Netherlands.

  • Fulweiler, R.W., S.W. Nixon, B.A. Buckley, and S.L. Granger. 2007. Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature 448: 180–182.

    CAS  Article  Google Scholar 

  • Fulweiler, R.W., A.J. Oczkowski, K.M. Miller, C.A. Oviatt, and M.E.Q. Pilson. 2015. Whole truths vs. half truths—and a search for clarity in long-term water temperature records. Estuarine, Coastal and Shelf Science.

  • Gornitz, V., S. Lebedeff, and J. Hansen. 1982. Global sea level trends in the past century. Science 215: 1611–1614.

    CAS  Article  Google Scholar 

  • Graustein, W.C., and K.K. Turekian. 1986. 210Pb and 137Cs in air and soils measure the rate and vertical profile of aerosol scavenging. Journal of Geophysical Research 91: 14355–14366.

    CAS  Article  Google Scholar 

  • Harley, C.D.G., A. Randall Hughes, K.M. Hultgren, B.G. Miner, C.J.B. Sorte, C.S. Thornber, L.F. Rodriguez, L. Tomanek, and S.L. Williams. 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241.

    Article  Google Scholar 

  • Hartig, E., V. Gornitz, A. Kolker, F. Mushacke, and D. Fallon. 2002. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands 22: 71–89.

    Article  Google Scholar 

  • Kirwan, M., and L. Blum. 2011. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8: 987–993.

    CAS  Article  Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53–60.

    CAS  Article  Google Scholar 

  • Kirwan, M.L., and S.M. Mudd. 2012. Response of salt-marsh carbon accumulation to climate change. Nature 489: 550–553.

    CAS  Article  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37, L23401.

    Article  Google Scholar 

  • Kirwan, M., G. Guntenspergen, and J. Langley. 2014. Temperature sensitivity of organic-matter decay in tidal marshes. Biogeosciences 11: 4801–4808.

    Article  Google Scholar 

  • Kolker, A.S., S.L. Goodbred Jr., S. Hameed, and J.K. Cochran. 2009. High-resolution records of the response of coastal wetland systems to long-term and short-term sea-level variability. Estuarine, Coastal and Shelf Science 84: 493–508.

    CAS  Article  Google Scholar 

  • Kolker, A.S., M.L. Kirwan, S.L. Goodbred, and J.K. Cochran. 2010. Global climate changes recorded in coastal wetland sediments: empirical observations linked to theoretical predictions. Geophysical Research Letters 37, L14706.

    Article  Google Scholar 

  • Kremer, J.N., and S.W. Nixon. 1978. Coastal marine ecosystem: simulation and analysis.

  • Krishnaswamy, S., D. Lal, J.M. Martin, and M. Meybeck. 1971. Geochronology of lake sediments. Earth and Planetary Science Letters 11: 407–414.

    CAS  Article  Google Scholar 

  • Langley, J.A., K.L. McKee, D.R. Cahoon, J.A. Cherry, J.P. Megonigal, and C.B. Field. 2009. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences of the United States of America 106: 6182–6186.

    CAS  Article  Google Scholar 

  • McCaffrey, R.J., and J. Thomson. 1980. A record of the accumulation of sediment and trace metals in a Connecticut salt marsh. In Advances in geophysics, estuarine physics and chemistry: studies in long island sound, ed. B. Saltzman, 165–236. New York: Academic.

    Chapter  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.

    Article  Google Scholar 

  • Morris, J.T., D. Porter, M. Neet, P.A. Noble, L. Schmidt, L.A. Lapine, and J.R. Jensen. 2005. Integrating LIDAR elevation data, multi‐spectral imagery and neural network modelling for marsh characterization. International Journal of Remote Sensing 26: 5221–5234.

    Article  Google Scholar 

  • Mudd, S.M., S.M. Howell, and J.T. Morris. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82: 377–389.

    CAS  Article  Google Scholar 

  • National Climate Assessment. 2014. U.S. Global Change Research Program. http://nca2014.globalchange.gov/report

  • Nelson, J.L., and E.S. Zavaleta. 2012. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise. PLoS ONE 7, e38558.

    CAS  Article  Google Scholar 

  • Nixon, S.W. 1982. The ecology of New England high salt marshes: a community profile. Medium: X; Size: Pages: (70 p).

  • Nixon, S.W., S. Granger, B.A. Buckley, M. Lamont, and B. Rowell. 2004. A one hundred and seventeen year coastal water temperature record from woods hole, Massachusetts. Estuaries 27: 397–404.

    Article  Google Scholar 

  • Nixon, S.W., R.W. Fulweiler, B.A. Buckley, S.L. Granger, B.L. Nowicki, and K.M. Henry. 2009. The impact of changing climate on phenology, productivity, and benthic-pelagic coupling in Narragansett Bay. Estuarine, Coastal and Shelf Science 82: 1–18.

    CAS  Article  Google Scholar 

  • NOAA. 2012. Tides and currents. Newport: National Oceanic and Atmospheric Association.

    Google Scholar 

  • Nuttle, W.K. 1988. The extent of lateral water movement in the sediments of a New England salt marsh. Water Resources Research 24: 2077–2085.

    Article  Google Scholar 

  • Orson, R.A., R.S. Warren, and W.A. Niering. 1987. Development of a tidal marsh in a New England river valley. Estuaries 10: 20–27.

    Article  Google Scholar 

  • Orson, R.A., R.S. Warren, and W.A. Niering. 1998. Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh. Estuarine, Coastal and Shelf Science 47: 419–429.

    Article  Google Scholar 

  • Oviatt, C. 2004. The changing ecology of temperate coastal waters during a warming trend. Estuaries 27: 895–904.

    Article  Google Scholar 

  • Oviatt, C.A., and S.W. Nixon. 1975. Sediment resuspension and deposition in Narragansett Bay. Estuarine and Coastal Marine Science 3: 201–217.

    CAS  Article  Google Scholar 

  • Paquette, C.H., K.L. Sundberg, R.M. Boumans, and G.L. Chmura. 2004. Changes in saltmarsh surface elevation due to variability in evapotranspiration and tidal flooding. Estuaries 27: 82–89.

    Article  Google Scholar 

  • Pilson, M.Q. 1985. On the residence time of water in Narragansett Bay. Estuaries 8: 2–14.

    Article  Google Scholar 

  • Pilson, M.E.Q. 2008. Narragansett Bay amidst a globally changing climate. In Science for ecosystem-based management, ed. A. Desbonnet and B.A. Costa-Pierce, 35–46. New York: Springer.

    Chapter  Google Scholar 

  • Raposa, K.B., R.L. Weber, M.L. Cole Ekberg, and W.S. Ferguson. Submitted. Dieback events accelerate ongoing Spartina patens decline in Rhode Island salt marshes. Estuaries and Coasts.

  • Redfield, A.C. 1972. Development of a New England salt marsh. Ecological Monographs 42: 201–237.

    Article  Google Scholar 

  • Roman, C.T., J.A. Peck, J.R. Allen, J.W. King, and P.G. Appleby. 1997. Accretion of a New England (U.S.A.) salt marsh in response to inlet migration, storms, and sea-level rise. Estuarine, Coastal and Shelf Science 45: 717–727.

    Article  Google Scholar 

  • Sallenger, A.H., K.S. Doran, and P.A. Howd. 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2: 884–888.

    Article  Google Scholar 

  • Seitzinger, S.P., S.W. Nixon, and M.E.Q. Pilson. 1984. Denitrification and nitrous oxide production in a coastal marine ecosystem. Limnology and Oceanography 29: 73–83.

    CAS  Article  Google Scholar 

  • Smayda, T., and D. Borkman. 2008. Nutrient and plankton dynamics in Narragansett Bay. In Science for ecosystem-based management, ed. A. Desbonnet and B. Costa-Pierce, 431–484. New York: Springer.

    Chapter  Google Scholar 

  • Smith, S.M. 2009. Multi-decadal changes in salt marshes of Cape Cod, MA: photographic analyses of vegetation loss, species shifts, and geomorphic change. Northeastern Naturalist 16: 183–208.

    Article  Google Scholar 

  • Turner, R.E., E.M. Swenson, and C.S. Milan. 2002. Organic and inorganic contributions to vertical accretion in salt marsh sediments. In Concepts and controversies in tidal marsh ecology, ed. M. Weinstein and D. Kreeger, 583–595. Netherlands: Springer.

    Chapter  Google Scholar 

  • Turner, E.R., C.S. Milan, and E.M. Swenson. 2006. Recent volumetric changes in salt marsh soils. Estuarine, Coastal and Shelf Science 69: 352–359.

  • Urban, N.R., S.J. Eisenreich, D.F. Grigal, and K.T. Schurr. 1990. Mobility and diagenesis of Pb and 210Pb in peat. Geochimica et Cosmochimica Acta 54: 3329–3346.

    CAS  Article  Google Scholar 

  • Valiela, I., J.M. Teal, and N.Y. Persson. 1976. Production and dynamics of experimentally enriched salt marsh vegetation: belowground biomass. Limnology and Oceanography 21: 245–252.

    Article  Google Scholar 

  • Valiela, I., J.M. Teal, S.D. Allen, R. Van Etten, D. Goehringer, and S. Volkmann. 1985. Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology 89: 29–54.

    CAS  Article  Google Scholar 

  • Warren, R.S., and W.A. Niering. 1993. Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74: 96–103.

    Article  Google Scholar 

  • Watson, E.B., C. Wigand, E. Davey, H.M. Andrews, and J. Bishop. Submitted. Wetland loss patterns and inundation-productivity relations prognosticate widespread salt marsh loss for southern New England. Estuaries and Coasts.

  • Watson, E., A. Oczkowski, C. Wigand, A. Hanson, E. Davey, S. Crosby, R. Johnson, and H. Andrews. 2015. Nutrient enrichment and precipitation changes do not enhance resiliency of salt marshes to sea level rise in the Northeastern US. Climatic Change 125: 501–509.

  • Weston, N. 2013. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries and Coasts: 1–23.

  • White, D.A., and J.M. Trapani. 1982. Factors influencing disappearance of Spartina alterniflora from litterbags. Ecology 63: 242–245.

    Article  Google Scholar 

  • Wigand, C., and C.T. Roman. 2012. North American coastal tidal wetlands. In Wetland habitats of North America: Ecology and conservation concerns, ed. D. Batzer and A. Baldwin, 408: University of California Press.

  • Wigand, C., R. Comeleo, R. McKinney, G. Thursby, M. Chintala, and M. Charpentier. 2001. Outline of a new approach to evaluate ecological integrity of salt marshes. Human and Ecological Risk Assessment 7: 1541–1554.

    Google Scholar 

  • Wigand, C., R.A. McKinney, M.A. Charpentier, M.M. Chintala, and G.B. Thursby. 2003. Relationships of nitrogen loadings, residential development, and physical characteristics with plant structure in New England salt marshes. Estuaries 26: 1494–1504.

    CAS  Article  Google Scholar 

  • Wigand, C., C.T. Roman, E.W. Davey, M.H. Stolt, R.L. Johnson, A. Hanson, E.B. Watson, S.B. Moran, D.R. Cahoon, J.C. Lynch, and P. Rafferty. 2014. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure. Ecological Applications 24: 633–649.

    Article  Google Scholar 

  • Wilson, C.A., Z.J. Hughes, D.M. FitzGerald, C.S. Hopkinson, V. Valentine, and A.S. Kolker. 2014. Saltmarsh pool and tidal creek morphodynamics: dynamic equilibrium of northern latitude saltmarshes? Geomorphology 213: 99–115.

    Article  Google Scholar 

  • Yin, J., M.E. Schlesinger, and R.J. Stouffer. 2009. Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geoscience 2: 262–266.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the editors of Estuaries and Coasts for approving this focus issue for publication. We are grateful for field assistance by Courtney Zambory, Marc Zemel, Jules Opton-Himmel, and Kenneth Raposa. We thank Sarah Sargent for laboratory assistance. This research was conducted under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanographic and Atmospheric Association Graduate Research Fellowship to J.C.C. We also thank the Department of Earth and Environment at Boston University for partial funding support of J.C.C. Finally, we thank Scott W. Nixon whose foresight and intellectual generosity started us on this research path.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Carey.

Additional information

Communicated by Linda K. Blum

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carey, J.C., Moran, S.B., Kelly, R.P. et al. The Declining Role of Organic Matter in New England Salt Marshes. Estuaries and Coasts 40, 626–639 (2017). https://doi.org/10.1007/s12237-015-9971-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-9971-1

Keywords

  • Salt marshes
  • Accretion rates
  • Sea level rise
  • Organic matter
  • Decomposition
  • Climate change
  • New England