Skip to main content

Advertisement

Log in

Patterns in Taxonomic and Functional Diversity of Macrobenthic Invertebrates Across Seagrass Habitats: a Case Study in Atlantic Canada

Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Functional diversity (FD) characterizes the role of species within communities based on their morphological, behavioural and life history traits. Taxonomic diversity is not always a surrogate for FD, and ecosystem functioning is more dependent on functional traits rather than species richness. Despite this, most diversity studies in seagrass ecosystems do not consider the functional trait landscape. Here, we compare and contrast the taxonomic and functional diversity and composition of macrobenthic invertebrates (infauna and small epifauna) across a gradient of seagrass habitats (bare sediment, bed edge and bed interior) at three sites in Nova Scotia, Canada. We also determine the relationship between taxonomic diversity and FD to gain insight into the consequences of species loss. At two sites, we found that taxonomic diversity (species number and Margalef and Simpson’s indices) increased from bare sediments to the bed interior, while FD (Rao index) did not or else showed a weaker pattern. At a third site, both taxonomic and functional diversity tended to increase across the seagrass gradient. Despite the differences in relationships between taxonomic and functional diversity, functional trait composition tended to be distinct across seagrass habitats at all sites. Regressions showed that FD increased either hyperbolically or linearly with taxonomic diversity. Our study suggests that for seagrass ecosystems similar to the ones sampled, the implications of species loss for ecosystem functioning may not be easily predicted from data of taxonomic diversity alone. This study provides some of the first data of taxonomic and functional diversity in seagrass ecosystems, which can be used to inform conservation objectives and management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Appy, T.D., L.E. Linkletter, and M.J. Dadswell. 1980. A guide to the marine flora and fauna of the Bay of Fundy: Annelida: Polychaeta. Fisheries and Environment Canada, Fisheries and Marine Service Technical Report No. 920.

  • Bale, A.J., and A.J. Kenny. 2005. Sediment analysis and seabed characterisation. In Methods for the study of the marine benthos, ed. A. Eleftheriou and A. McIntyre, 43–86. Oxford: Blackwell Science Ltd.

    Chapter  Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.

    Article  Google Scholar 

  • Bolam, S.G., and J.D. Eggleton. 2014. Macrofaunal production and biological traits: spatial relationships along the UK continental shelf. Journal of Sea Research 88: 47–58.

    Article  Google Scholar 

  • Bologna, P.A. 2006. Assessing within habitat variability in plant demography, faunal density, and secondary production in an eelgrass (Zostera marina L.) bed. Journal of Experimental Marine Biology and Ecology 329: 122–134.

    Article  Google Scholar 

  • Boström, C., K. O'Brien, C. Roos, and J. Ekebom. 2006. Environmental variables explaining structural and functional diversity of seagrass macrofauna in an archipelago landscape. Journal of Experimental Marine Biology and Ecology 335: 52–73.

    Article  Google Scholar 

  • Boström, C., A. Törnroos, and E. Bonsdorff. 2010. Invertebrate dispersal and habitat heterogeneity: expression of biological traits in a seagrass landscape. Journal of Experimental Marine Biology and Ecology 390: 106–117.

    Article  Google Scholar 

  • Bousfield, E.L. 1973. Shallow-water gammaridean Amphipoda of New England. NY: Comstock Pub. Associates.

    Google Scholar 

  • Bowden, D.A., A.A. Rowden, and M.J. Attrill. 2001. Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages of Zostera marina seagrass beds. Journal of Experimental Marine Biology and Ecology 259: 133–154.

    Article  Google Scholar 

  • Braeckman, U., P. Provoost, B. Gribsholt, D. Van Gansbeke, J.J. Middelburg, K. Soetaert, M. Vincx, and J. Vanaverbeke. 2010. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Marine Ecology Progress Series 399: 173–186.

    Article  CAS  Google Scholar 

  • Bremner, J., S.I. Rogers, and C.L.J. Frid. 2006. Matching biological traits to environmental conditions in marine benthic ecosystems. Journal of Marine Systems 60: 302–316.

    Article  Google Scholar 

  • Chevenet, F., S. Doléadec, and D. Chessel. 1994. A fuzzy coding approach for the analysis of long‐term ecological data. Freshwater Biology 31: 295–309.

    Article  Google Scholar 

  • Clarke, K.R., and R.M. Warwick. 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. Plymouth: PRIMER-E.

    Google Scholar 

  • Cook, D.G., and R.O. Brinkhurst. 1973. Marine flora and fauna of the northeastern United States. Annelida: Oligochaeta. NOAA Technical Report NMFS CIRC-374.

  • Dauer, D.M., C.A. Maybury, and R.M. Ewing. 1981. Feeding behaviour and general ecology of several spionid polychaetes from the Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 54: 21–38.

    Article  Google Scholar 

  • Díaz, S., and M. Cabido. 2001. Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16: 646–655.

    Article  Google Scholar 

  • Dolbeth, M., M.A. Pardal, A.I. Lillebø, U. Azeiteiro, and J.C. Marques. 2003. Short-and long- term effects of eutrophication on the secondary production of an intertidal macrobenthic community. Marine Biology 143: 1229–1238.

    Article  Google Scholar 

  • Dolbeth, M., P. Cardoso, T. Grilo, D. Raffaelli, and M.A. Pardal. 2013. Drivers of estuarine benthic species distribution patterns following a restoration of a seagrass bed: a functional trait analyses. Marine Pollution Bulletin 72: 47–54.

    Article  CAS  Google Scholar 

  • Dowd, M., M.C. Wong, and C. McCarthy. 2014. Tidal analysis in Little Port Joli Basin, Kejimkujik National Park Seaside, NS: before and after removal of bridge and causeway. Fisheries and Oceans Canada, Canadian Technical Report of Fisheries and Aquatic Sciences, 3099.

  • Draper, N.R., and H. Smith. 1998. Applied regression analysis. NY: John Wiley and Sons.

    Book  Google Scholar 

  • Edgar, G.J. 1990. The influence of plant structure on the species richness, biomass and secondary production of macrofaunal assemblages associated with Western Australian seagrass beds. Journal of Experimental Marine Biology and Ecology 137: 215–240.

    Article  Google Scholar 

  • Fauchald, K., and P.A. Jumars. 1979. The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology. Annual Review 17: 193–284.

    Google Scholar 

  • Fredette, T.J., and R.J. Diaz. 1986. Life history of Gammarus mucronatus Say (Amphipoda: Gammaridae) in warm temperate estuarine habitats, York River, Virginia. Journal of Crustacean Biology 6: 57–78.

    Article  Google Scholar 

  • Heck, K.L., K.W. Able, C.T. Roman, and M.P. Fahay. 1995. Composition, abundance, biomass, and production of macrofauna in a New England estuary: comparisons among eelgrass meadows and other nursery habitats. Estuaries 18: 379–389.

    Article  Google Scholar 

  • Herman, P.M.J., J.J. Middelburg, J. van de Koppel, and C.H.R. Heip. 1999. Ecology of estuarine macrobenthos. Advances in Ecological Research 29: 195–240.

    Article  Google Scholar 

  • Hooper, D.U., F.S. Chapin III, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J.H. Lawton, D.M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala, A.J. Symstad, J. Vandermeer, and D.A. Wardle. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • John, D.M., S.J. Hawkins, and J.H. Price. 1992. Plant-animal interactions in the marine benthos. Clarendon Press.

  • Lavorel, S., and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545–556.

    Article  Google Scholar 

  • Lavorel, S., K. Grigulis, P. Lamarque, M.P. Colace, D. Garden, J. Girel, G. Pellet, and R. Douzet. 2011. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology 99: 135–147.

    Article  Google Scholar 

  • Lepš, J., F. De Bello, S. Lavorel, and S. Berman. 2006. Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78: 481–501.

    Google Scholar 

  • Levin, L., N. Blair, D. DeMaster, G. Plaia, W. Fornes, C. Martin, and C. Thomas. 1997. Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope. Journal of Marine Research 55: 595–611.

    Article  CAS  Google Scholar 

  • Luczak, C., M.-A. Janquin, and A. Kupka. 1997. Simple standard procedure for the routine determination of organic matter in marine sediment. Hydrobiologia 345: 87–94.

    Article  CAS  Google Scholar 

  • Madsen, S.D., T.L. Forbes, and V.E. Forbes. 1997. Particle mixing by the polychaete Capitella species 1: coupling fate and effect of a particle-bound organic contaminant (fluoranthene) in a marine sediment). Marine Ecology Progress Series 147: 129–142.

    Article  CAS  Google Scholar 

  • MarLIN, 2006. BIOTIC—Biological Traits Information Catalogue. Marine Life Information Network. Plymouth: Marine Biological Association of the United Kingdom. Accessed 2014. Available from www.marlin.ac.uk/biotic.

  • Mason, N.W.H., D. Mouillot, W.G. Lee, and J.B. Wilson. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118.

    Article  Google Scholar 

  • Michaelis, H., and L. Vennemann. 2005. The “piece-by-piece predation” of Eteone longa on Scolelepis squamata (Polychaetes)—traces on the sediment documenting chase, defence and mutilation. Marine Biology 147: 719–724.

    Article  Google Scholar 

  • Micheli, F., and B.S. Halpern. 2005. Low functional redundancy in coastal marine assemblages. Ecology Letters 8: 391–400.

    Article  Google Scholar 

  • Mills, V.S., and K. Berkenbusch. 2009. Seagrass (Zostera muelleri) patch size and spatial location influence infaunal macroinvertebrate assemblages. Estuarine, Coastal and Shelf Science 81: 123–129.

    Article  Google Scholar 

  • Norling, K., R. Rosenberg, S. Hulth, A. Grémare, and E. Bonsdorff. 2007. Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Marine Ecology Progress Series 332: 11–23.

    Article  CAS  Google Scholar 

  • Oakden, J.M. 1984. Feeding and substrate preference in five species of Phoxocephalid amphipods from central California. Journal of Crustacean Biology 4: 233–247.

    Article  Google Scholar 

  • Paganelli, D., A. Marchini, and A. Occhipinti-Ambrogi. 2012. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): a study along the Emilia- Romagna coastline (Italy, North-West Adriatic Sea). Estuarine, Coastal and Shelf Science 96: 245–256.

    Article  Google Scholar 

  • Pearson, T.H. 2001. Functional group ecology in soft-sediment marine benthos: the role of bioturbation. Oceanography and Marine Biology: An Annual Review 6: 229–231.

    Google Scholar 

  • Petchey, O.L., and K.J. Gaston. 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741–758.

    Article  Google Scholar 

  • Petchey, O.L., K.L. Evans, I.S. Fishburn, and K.J. Gaston. 2007. Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology 76: 977–985.

    Article  Google Scholar 

  • Pollock, L.W. 1998. A practical guide to the marine animals of northeastern North America. NJ: Rutgers University Press.

    Google Scholar 

  • Ponder, W.F. 1984. A review of the genera of the Rissoidae (Mollusca: Mesogastropoda: Rissoacea). Records of the Australian Museum, Suppl 4, 1–206.

  • Prato, E., and F. Biandolino. 2006. Life history of the amphipod Corophium insidiosum (Crustacea: Amphipoda) from Mar Piccolo (Ionian Sea, Italy). Scientia Marina 70: 355–362.

    Article  Google Scholar 

  • Rao, C.R. 1982. Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology 21: 24–43.

    Article  Google Scholar 

  • Rice, D.L., T.S. Bianchi, and E.H. Roper. 1986. Experimental studies of sediment reworking and growth of Scoloplos spp. (Orbiniidae: Polychaeta). Marine Ecology Progress Series 30: 9–19.

    Article  Google Scholar 

  • Scaps, P. 2002. A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O.F. Müller) (Annelida: Polychaete). Hydrobiologia 470: 203–218.

    Article  Google Scholar 

  • Scheltema, R.S. 1964. Feeding habits and growth in the mud-snail Nassarius obsoletus. Chesapeake Science 5: 161–166.

    Article  Google Scholar 

  • Schleuter, D., M. Daufresne, F. Massol, and C. Argillier. 2010. A user's guide to functional diversity indices. Ecological Monographs 80: 469–484.

    Article  Google Scholar 

  • Sellmer, G.P. 1967. Functional morphology and ecological life history of the gem clam, Gemma gemma (Eulamellibranchia: Veneridae). Malacologia 5: 137–223.

    Google Scholar 

  • Sheader, M. 1978. Distribution and reproductive biology of Corophium insidiosum (Amphipoda) on the north-east coast of England. Journal of the Marine Biological Association of the UK 58: 585–596.

    Article  Google Scholar 

  • Snelgrove, P.V. 1997. The importance of marine sediment biodiversity in ecosystem processes. Ambio 26: 578–583.

    Google Scholar 

  • Snelgrove, P.V., and C.A. Butman. 1994. Animal-sediment relationships revisited: cause versus effect. Oceanography and Marine Biology: An Annual Review 32: 111–177.

    Google Scholar 

  • Tillin, H.M., J.G. Hiddink, S. Jennings, and M.J. Kaiser. 2006. Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Marine Ecology Progress Series 318: 31–45.

    Article  Google Scholar 

  • Törnroos, A., E. Bonsdorff, J. Bremner, M. Blomqvist, A.B.. Josefson, C. Garcia, and J. Warzocha. 2014. Marine benthic ecological functioning over decreasing taxonomic richness. Journal of Sea Research In Press.

  • Ulrich, I., K. Anger, and U. Schöttler. 1995. Tube-building in two epifaunal amphipod species, Corophium insidiosum and Jassa falcata. Helgoländer Meeresunters 49: 393–398.

    Article  Google Scholar 

  • Ure, D., S. Chisholm, and D. Kehler. 2010. Kejimkujik National Park and National Historic Site Technical Compendium to the 2010 State of the Park Report. Parks Canada, Maitland Bridge, Nova Scotia.

  • Veríssimo, H., J. Bremner, C. Garcia, J. Patríco, P. van der Linden, and J.C. Marques. 2012. Assessment of the subtidal macrobenthic community functioning of a temperate estuary following environmental restoration. Ecological Indicators 23: 312–322.

    Article  Google Scholar 

  • Villéger, S., N.W.H. Mason, and D. Mouillot. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    Article  Google Scholar 

  • Wan Hussin, W.M.R., K.M. Cooper, C.R.S. Barrio Froján, E.C. Defew, and D.M. Paterson. 2012. Impacts of physical disturbance on the recovery of a macrofaunal community: a comparative analysis using traditional and novel approaches. Ecological Indicators 12: 37–45.

    Article  Google Scholar 

  • Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106: 12377–12381.

    Article  CAS  Google Scholar 

  • Weiss, H.M. 1995. Marine animals of Southern New England and New York: Identification keys to common nearshore and shallow water macrofauna. Hartford, CT: State Geological and Natural History Survey of Connecticut. Department of Environmental Protection.

    Google Scholar 

  • Wong, M.C., C.H. Peterson, and M.F. Piehler. 2011. Evaluating estuarine habitats using secondary production as a proxy for food web support. Marine Ecology Progress Series 440: 11–25.

    Article  Google Scholar 

  • Wong, M.C., M.A. Bravo, and M. Dowd. 2013. Ecological dynamics of Zostera marina (eelgrass) in three adjacent bays in Atlantic Canada. Botanica Marina 56: 413–424.

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Bravo and R. Tress for providing technical assistance in the field and laboratory. The manuscript was improved by comments from anonymous reviewers. Funding was provided by Fisheries and Oceans Canada (MW) and an NSERC Discovery Grant (MD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melisa C. Wong.

Additional information

Communicated by Ted Grosholz

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, M.C., Dowd, M. Patterns in Taxonomic and Functional Diversity of Macrobenthic Invertebrates Across Seagrass Habitats: a Case Study in Atlantic Canada. Estuaries and Coasts 38, 2323–2336 (2015). https://doi.org/10.1007/s12237-015-9967-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-9967-x

Keywords

Navigation