Skip to main content

Advertisement

Log in

Large-Scale Prediction of Seagrass Distribution Integrating Landscape Metrics and Environmental Factors: The Case of Cymodocea nodosa (Mediterranean–Atlantic)

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Understanding the factors that affect seagrass meadows encompassing their entire range of distribution is challenging yet important for their conservation. Here, we predict the realized and potential distribution for the species Cymodocea nodosa modelling its environmental niche in the Mediterranean and adjacent Atlantic coastlines. We use a combination of environmental variables and landscape metrics to perform a suite of predictive algorithms which enables examination of the niche and find suitable habitats for the species. The most relevant environmental variables defining the distribution of C. nodosa were sea surface temperature (SST) and salinity. We found suitable habitats at SST from 5.8 °C to 26.4 °C and salinity ranging from 17.5 to 39.3. Optimal values of mean winter wave height ranged between 1.2 and 1.5 m, while waves higher than 2.5 m seemed to limit the presence of the species. The influence of nutrients and pH, despite having weight on the models, was not so clear in terms of ranges that confine the distribution of the species. Landscape metrics able to capture variation in the coastline enhanced significantly the accuracy of the models, despite the limitations caused by the scale of the study. We found potential suitable areas not occupied by the seagrass mainly in coastal regions of North Africa and the Adriatic coast of Italy. The present study describes the realized and potential distribution of a seagrass species, providing the first global model of the factors that can be shaping the environmental niche of C. nodosa throughout its range. We identified the variables constraining its distribution as well as thresholds delineating its environmental niche. Landscape metrics showed promising prospects for the prediction of coastal species dependent on the shape of the coast. By contrasting predictive approaches, we defined the variables affecting the distributional areas that seem unsuitable for C. nodosa as well as those suitable habitats not occupied by the species. These findings are encouraging for its use in future studies on climate-related marine range shifts and meadow restoration projects of these fragile ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberto, F., S. Massa, P. Manent, E. Diaz‐Almela, S. Arnaud‐Haond, C.M. Duarte, and E.A. Serrão. 2008. Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean–Atlantic transition region. Journal of Biogeography 35: 1279–1294.

  • Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232.

    Article  Google Scholar 

  • Araújo, M.B., and M. New. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 42–47.

    Article  Google Scholar 

  • Araújo, M.B., and A.T. Peterson. 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93: 1527–1539.

    Article  Google Scholar 

  • Barbet-Massin, M., F. Jiguet, C.H. Albert, and W. Thuiller. 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327–338.

    Article  Google Scholar 

  • Bryan, T.L., and A. Metaxas. 2007. Predicting suitable habitat for deep-water gorgonian corals on the Atlantic and Pacific continental margins of North America. Marine Ecology Progress Series 330: 113–126.

    Article  Google Scholar 

  • Cabaço, S., Ó. Ferreira, and R. Santos. 2010. Population dynamics of the seagrass Cymodocea nodosa in Ria Formosa lagoon following inlet artificial relocation. Estuarine, Coastal and Shelf Science 87: 510–516.

    Article  Google Scholar 

  • Calenge, C. 2006. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling 197: 516–519.

    Article  Google Scholar 

  • Calenge, C., G. Darmon, M. Basille, A. Loison, and J.M. Jullien. 2008. The factorial decomposition of the Mahalanobis distances in habitat selection studies. Ecology 89: 555–566.

    Article  CAS  Google Scholar 

  • Cancemi, G., M.C. Buia, and L. Mazzella. 2002. Structure and growth dynamics of Cymodocea nodosa meadows. Scientia Marina 66: 365–373.

    Google Scholar 

  • Chefaoui, R.M. 2014. Landscape metrics as indicators of coastal morphology: a multi-scale approach. Ecological Indicators 45: 139–147.

    Article  Google Scholar 

  • Chefaoui, R.M., and J.M. Lobo. 2008. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling 210: 478–486.

    Article  Google Scholar 

  • Chen, Z., F.E. Muller-Karger, and C. Hu. 2007. Remote sensing of water clarity in Tampa Bay. Remote Sensing of Environment 109: 249–259.

    Article  Google Scholar 

  • Clark, J.D., J.E. Dunn, and K.G. Smith. 1993. A multivariate model of female black bear habitat use for a geographic information system. The Journal of Wildlife Management 57: 519–526.

    Article  Google Scholar 

  • Costanza, R., R. d’Arge, R. De Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1998. The value of the world’s ecosystem services and natural capital. Ecological Economics 25: 3–15.

    Article  Google Scholar 

  • Cunha, A.H., and A. Araújo. 2009. New distribution limits of seagrass beds in West Africa. Journal of Biogeography 36: 1621–1622.

    Article  Google Scholar 

  • Cunha, A.H., J.F. Assis, and E.A. Serrão. 2013. Seagrasses in Portugal: a most endangered marine habitat. Aquatic Botany 104: 193–203.

    Article  Google Scholar 

  • Cushman, S.A., K. McGarigal, and M.C. Neel. 2008. Parsimony in landscape metrics: strength, universality, and consistency. Ecological Indicators 8: 691–703.

    Article  Google Scholar 

  • Duarte, C.M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.

    Article  Google Scholar 

  • Duarte, C. M. 2011. Seagrass meadows. http://www.eoearth.org/view/article/155952.

  • Duarte, C.M., and K. Sand-Jensen. 1996. Nutrient constraints on establishment from seed and on vegetative expansion of the Mediterranean seagrass Cymodocea nodosa. Aquatic Botany 54: 279–286.

    Article  Google Scholar 

  • Duarte, C. M., J. Borum, F. Short, and D. Walker 2008. Seagrass ecosystems: Their global status and prospects. In Aquatic Ecosystems, ed N. Polunin, 281–294. Cambridge University Press.

  • Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36: 221–236.

    Article  CAS  Google Scholar 

  • Elith, J., S. Ferrier, F. Huettmann, and J. Leathwick. 2005. The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecological Modelling 186: 280–289.

    Article  Google Scholar 

  • Enriquez, S., N. Marbà, J. Cebriàn, and C.M. Duarte. 2004. Annual variation in leaf photosynthesis and leaf nutrient content of four Mediterranean seagrasses. Botanica Marina 47: 295–306.

    Article  Google Scholar 

  • Espino, F., F. Tuya, A. Brito, and R.J. Haroun. 2011. Ichthyofauna associated with Cymodocea nodosa meadows in the Canarian Archipelago (central eastern Atlantic): community structure and nursery role. Ciencias Marinas 37: 157–174.

    Article  Google Scholar 

  • Fernández-Torquemada, Y., and J.L. Sánchez-Lizaso. 2006. Effects of salinity on growth and survival of Cymodocea nodosa Ucria Ascherson and Zostera noltii Hornemann. Biologia Marina Mediterranea 13: 46–47.

    Google Scholar 

  • Fielding, A.H., and J.F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.

    Article  Google Scholar 

  • Gartner, A., F. Tuya, P.S. Lavery, and K. McMahon. 2013. Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. Journal of Experimental Marine Biology and Ecology 439: 143–151.

    Article  Google Scholar 

  • GEBCO General Bathymetric Chart of the Oceans 2010. Br. Oceanogr. Data Cent., Liverpool, U. K. http://www.gebco.net/data_and_products/gridded_bathymetry_data/.

  • GEODAS-NG Software version 1.1.1.1. National Geophysical Data Center, Boulder, Colorado. http// www.ngdc.noaa.gov/mgg/gdas/gx_announce.html Accessed Aug 2013.

  • Gohin, F., S. Loyer, M. Lunven, C. Labry, J.M. Froidefond, D. Delmas, M. Huret, and A. Herbland. 2005. Satellite-derived parameters for biological modelling in coastal waters: illustration over the eastern continental shelf of the Bay of Biscay. Remote Sensing of Environment 95: 29–46.

    Article  Google Scholar 

  • Green, E. P. and F. T. Short (eds) 2003. World atlas of seagrasses. Univ of California Press.

  • GSHHG. A global self-consistent, hierarchical, high-resolution geography database version 2.2.2. National Geophysical Data Center, Boulder, Colorado. http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html. Accessed Aug 2013.

  • Guidetti, P., and S. Bussotti. 2000. Fish fauna of a mixed meadow composed by the seagrasses Cymodocea nodosa and Zostera noltii in the Western Mediterranean. Oceanologica Acta 23: 759–770.

    Article  Google Scholar 

  • Guiry, M. D., and G. M. Guiry 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed 13 Feb 2014.

  • Guisan, A., and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009.

    Article  Google Scholar 

  • Hendriks, I.E., Y.S. Olsen, L. Ramajo, L. Basso, A. Steckbauer, T. Moore, J. Howard, and C.M. Duarte. 2014. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11: 333–346.

    Article  Google Scholar 

  • Hirzel, A.H., J. Hausser, D. Chessel, and N. Perrin. 2002. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 7: 2027–2036.

    Article  Google Scholar 

  • Huot, Y., C.A. Brown, and J.J. Cullen. 2005. New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products. Limnology and Oceanography: Methods 3: 108–130.

    Article  CAS  Google Scholar 

  • Jiménez-Valverde, A., J.M. Lobo, and J. Hortal. 2008. Not as good as they seem: The importance of concepts in species distribution modelling. Diversity and Distributions 14: 885–890.

    Article  Google Scholar 

  • Lee, K.S., S.R. Park, and Y.K. Kim. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350: 144–175.

    Article  Google Scholar 

  • Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. R News 2: 18–22.

    Google Scholar 

  • Lobo, J.M., A. Jiménez-Valverde, and J. Hortal. 2010. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33: 103–114.

    Article  Google Scholar 

  • Malea, P., T. Kevrekidis, and M. Potouroglou. 2013. Seasonal variation of trace metal Mn, Zn, Cu, Pb, Co, Cd concentrations in compartments of the seagrass Cymodocea nodosa. Botanica Marina 56: 169–184.

    Article  CAS  Google Scholar 

  • Marbà, N., J. Cebrián, S. Enriquez, and C.M. Duarte. 1996. Growth patterns of Western Mediterranean seagrasses: species-specific responses to seasonal forcing. Marine Ecology Progress Series 133: 203–215.

    Article  Google Scholar 

  • Mateo, R.G., T.B. Croat, A.M. Felicísimo, and J. Muñoz. 2010. Profile or group discriminative techniques? Generating reliable species distribution models using pseudo-absences and target-group absences from natural history collections. Diversity and Distributions 16: 84–94.

    Article  Google Scholar 

  • McGarigal K., Cushman S. A., and Ene E. 2012. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed Aug 2013.

  • Olivé, I., J.J. Vergara, and J.L. Pérez-Lloréns. 2013. Photosynthetic and morphological photoacclimation of the seagrass Cymodocea nodosa to season, depth and leaf position. Marine Biology 160: 285–297.

    Article  Google Scholar 

  • Olsen, Y.S., M. Sánchez-Camacho, N. Marbà, and C.M. Duarte. 2012. Mediterranean seagrass growth and demography responses to experimental warming. Estuaries and Coasts 35: 1205–1213.

    Article  Google Scholar 

  • Orth, R.J., T.J. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. Bioscience 56: 987–996.

  • Pagès, J.F., M. Pérez, and J. Romero. 2010. Sensitivity of the seagrass Cymodocea nodosa to hypersaline conditions: a microcosm approach. Journal of Experimental Marine Biology and Ecology 386: 34–38.

    Article  Google Scholar 

  • Pérez, M., and J. Romero. 1992. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquatic Botany 43: 51–62.

    Article  Google Scholar 

  • Pérez, M., J. Romero, C.M. Duarte, and K. Sand-Jensen. 1991. Phosphorus limitation of Cymodocea nodosa growth. Marine Biology 109: 129–133.

    Article  Google Scholar 

  • Pérez, M., C.M. Duarte, J. Romero, K. Sand-Jensen, and T. Alcoverro. 1994. Growth plasticity in Cymodocea nodosa stands: the importance of nutrient supply. Aquatic Botany 47: 249–264.

    Article  Google Scholar 

  • Poloczanska, E.S., C.J. Brown, W.J. Sydeman, W. Kiessling, D.S. Schoeman, P.J. Moore, K. Brander, J.F. Bruno, L. Buckley, M.T. Burrows, C.M. Duarte, B.S. Halpern, J. Holding, C.V. Kappel, M.I. O’Connor, J.M. Pandolfi, C. Parmesan, F. Schwing, S.A. Thompson, and A.J. Richardson. 2013. Global imprint of climate change on marine life. Nature Climate Change 3: 919–925.

    Article  Google Scholar 

  • R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ Accessed Mar 2013.

  • Schaeffer, P., Y. Faugere, J.F. Legeais, A. Ollivier, T. Guinle, and N. Picot. 2012. The CNES_CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Marine Geodesy 35: 3–19.

    Article  Google Scholar 

  • Stark, J.D., C.J. Donlon, M.J. Martin and M.E. McCulloch 2007. OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. In: OCEANS 2007-Europe, IEEE, 1-4.

  • Thuiller, W., D. Georges, and R. Engler 2013. biomod2: Ensemble platform for species distribution modeling. R package version 3.1-25.

  • Tittensor, D.P., C. Mora, W. Jetz, H.K. Lotze, D. Ricard, E.V. Berghe, and B. Worm. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466: 1098–1101.

    Article  CAS  Google Scholar 

  • Turner, M.G., R.V. O’Neill, R.H. Gardner, and B.T. Milne. 1989. Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology 3: 153–162.

    Article  Google Scholar 

  • Tuya, F., H. Hernandez-Zerpa, F. Espino, and R. Haroun. 2013. Drastic decadal decline of the seagrass Cymodocea nodosa at Gran Canaria eastern Atlantic: interactions with the green algae Caulerpa prolifera. Aquatic Botany 105: 1–6.

    Article  Google Scholar 

  • Tuya, F., R. Haroun, and F. Espino. 2014a. Economic assessment of ecosystem services: monetary value of seagrass meadows for coastal fisheries. Ocean & Coastal Management 96: 181–187.

    Article  Google Scholar 

  • Tuya, F., L. Png-Gonzalez, R. Riera, R. Haroun, and F. Espino. 2014b. Ecological structure and function differs between habitats dominated by seagrasses and green seaweeds. Marine Environmental Research 98: 1–13.

    Article  CAS  Google Scholar 

  • Tyberghein, L., H. Verbruggen, K. Pauly, C. Troupin, F. Mineur, and O. De Clerck. 2012. Bio‐ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21: 272–281.

    Article  Google Scholar 

  • Valle, M., G. Chust, A. del Campo, M.S. Wisz, S.M. Olsen, J.M. Garmendia, and Á. Borja. 2014. Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biological Conservation 170: 74–85.

    Article  Google Scholar 

  • Van Katwijk, M.M., A.R. Bos, V.N. De Jonge, L.S.A.M. Hanssen, D.C.R. Hermus, and D.J. De Jong. 2009. Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Marine Pollution Bulletin 58: 179–188.

    Article  Google Scholar 

  • Venables, W.N., and B.D. Ripley. 2002. Modern applied statistics with S. New York: Springer.

    Book  Google Scholar 

  • Verdiell-Cubedo, D., F.J. Oliva-Paterna, and M. Torralva-Forero. 2007. Fish assemblages associated with Cymodocea nodosa and Caulerpa prolifera meadows in the shallow areas of the Mar Menor coastal lagoon. Limnetica 26: 341–350.

    Google Scholar 

  • Waycott, M., C.M. Duarte, T.J. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106: 12377–12381.

    Article  CAS  Google Scholar 

  • Welch, B.L. 1947. The generalization of student’s’ problem when several different population variances are involved. Biometrika 34: 28–35.

    CAS  Google Scholar 

  • Zaniewski, A.E., A. Lehmann, and J.M. Overton. 2002. Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling 157: 261–280.

    Article  Google Scholar 

  • Zarranz, M.E., N. González-Henríquez, P. García-Jiménez, and R.R. Robaina. 2010. Restoration of Cymodocea nodosa seagrass meadows through seed propagation: germination in vitro, seedling culture and field transplants. Botanica Marina 53: 173–181.

    Google Scholar 

Download references

Acknowledgments

We thank the three anonymous referees for their helpful comments. We are also grateful to Cymon Cox for his guidance to run R on the CCMAR GYRA cluster and to Damien Georges and Wilfried Thuiller for their help with biomod2. RC was supported by the postdoctoral fellowship SFRH/BPD/85040/2012 from the Fundação para a Ciência e a Tecnologia (FCT, Portugal). JA was supported by the postdoctoral fellowship CCMAR/BPD/0045/2013 from FCT. We acknowledge FCT project EXTANT (EXCL/AAG-GLO/0661/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Chefaoui.

Additional information

Communicated by Charles Simenstad

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chefaoui, R.M., Assis, J., Duarte, C.M. et al. Large-Scale Prediction of Seagrass Distribution Integrating Landscape Metrics and Environmental Factors: The Case of Cymodocea nodosa (Mediterranean–Atlantic). Estuaries and Coasts 39, 123–137 (2016). https://doi.org/10.1007/s12237-015-9966-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-9966-y

Keywords

Navigation