Skip to main content
Log in

Effects of Oxygen Loss on Carbon Processing and Heterotrophic Prokaryotes from an Estuarine Ecosystem: Results from Stable Isotope Probing and Cytometry Analyses

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Many aquatic ecosystems are experiencing a decline in their oxygen (O2) content and this is predicted to continue. Implications of this change on several properties of bacterioplankton (heterotrophic prokaryotes) remain however are poorly known. In this study, oxic samples (∼170 μM O2 = controls) from an oligohaline region of the Scheldt Estuary were purged with N2 to yield low-O2 samples (∼69 μM O2 = treatments); all were amended with 13C-glucose and incubated in dark to examine carbon incorporation and cell size of heterotrophic prokaryotes, and relationships between organic matter (OM) degradation and phosphate (P) availability in waters following O2 loss. Stable isotope (13C) probing of phospholipid fatty acids (PLFA) and flow cytometry were used. In samples that have experienced O2 loss, PLFA biomass became higher, prokaryotic cells had significantly larger size and higher nucleic acid content, but P concentrations was lower, compared to controls. P concentration and OM degradation were positively related in controls, but uncoupled in low-O2 samples. Moreover, the dominant PLFA 16:1ω7c (likely mainly from Gram-negative bacteria) and the nucleic acid content of heterotrophic prokaryotic cells in low-O2 samples explained (62–72 %) differences between controls and low-O2 samples in P amounts. Shortly after incubations began, low-O2 samples had consistently lower bacterial PLFA 13C-enrichments, suggesting involvement of facultatively anaerobic metabolism in carbon incorporation, and supporting the view that this metabolic pathway is widespread among pelagic bacteria in coastal nutrient-rich ecosystems. Estimates based on 13C-enrichment of PLFAs indicated that grazing by protozoa on some bacteria was stronger in low-O2 samples than in controls, suggesting that the grazing pressure on some heterotrophic prokaryotes may increase at the onset of O2 deficiency in nutrient-rich aquatic systems. These findings also suggest that physiological responses of heterotrophic prokaryotes to O2 loss in such ecosystems include increases in cell activity, high carbon incorporation, and possibly phosphorus retention by cells that may contribute to reduce phosphate availability in waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso, C., and J. Pernthaler. 2005. Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters. Applied and Environmental Microbiology 71: 1709–1716.

    Article  CAS  Google Scholar 

  • Barak, Y., and J. van Rijn. 2000. Atypical polyphosphate accumulation by the denitrifying bacterium Paracoccus denitrificans. Applied and Environmental Microbiology 66: 1209–1212.

    Article  CAS  Google Scholar 

  • Benitez-Nelson, C.R., L.C. Kolowitch, P. Pellichia, and R. Thunell. 2004. Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnology and Oceanography 49: 1593–1604.

    Article  CAS  Google Scholar 

  • Bettarel, Y., T. Simè-Ngando, C. Amblard, and J. Dolan. 2004. Viral activity in two contrasting lake ecosystems. Applied and Environmental Microbiology 70: 2941–2951.

    Article  CAS  Google Scholar 

  • Billen, G., J. Garnier, and V. Rousseau. 2005. Nutrient fluxes and water quality in the drainage network of the Scheldt basin over the last 50 years. Hydrobiologia 540: 47–67.

    Article  CAS  Google Scholar 

  • Boschker, H.T.S., J.F.C. de Brouwer, and T.E. Cappenberg. 1999. The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnology and Oceanography 44: 309–319.

    Article  Google Scholar 

  • Boschker, H.T.S., J. Krompkamp, and J.J. Middelburg. 2005. Biomarkers and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnology and Oceanography 50: 70–80.

    Article  CAS  Google Scholar 

  • Boström, B., J.M. Andersen, S. Fleischer, and M. Jansson. 1988. Exchange of phosphorus across the sediment–water interface. Hydrobiologia 170: 229–244.

    Article  Google Scholar 

  • Cole, J.J., and M.L. Pace. 1995. Bacterial secondary production in oxic and anoxic freshwaters. Limnology and Oceanography 40: 1019–1027.

    Article  Google Scholar 

  • Cole, J.J., M.L. Pace, N.F. Caraco, and G.S. Steinhart. 1993. Bacterial biomass and cell size distribution in lakes: More and larger cells in anoxic waters. Limnology and Oceanography 38: 1627–1632.

    Article  Google Scholar 

  • Crump, B.C., C. Parenteau, B. Beckingham, and J.C. Cornwell. 2007. Respiratory succession and community succession of bacterioplankton in seasonally anoxic waters. Applied and Environmental Microbiology 73: 6802–6810.

    Article  CAS  Google Scholar 

  • Cuevas, L.A., and C.E. Morales. 2006. Nanoheterotroph grazing on bacteria and cyanobacteria in oxic and suboxic waters in coastal upwelling areas of northern Chile. Journal of Plankton Research 28: 385–397.

    Article  CAS  Google Scholar 

  • Detmer, A.E., H.C. Giesenhagen, V.M. Trenkel, H. Auf dem Venne, and F.J. Jochem. 1993. Phototrophic and heterotrophic pico- and nanoplankton in anoxic depths of the central Baltic Sea. Marine Ecology Progress Series 99: 197–203.

    Article  Google Scholar 

  • Deutsch, C., H. Brix, T. Ito, H. Frenzel, and L. Thompson. 2011. Climate-forced variability of ocean hypoxia. Science 333: 336–338.

    Article  CAS  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.

    Article  CAS  Google Scholar 

  • Edgcomb, V., W. Orsi, J. Bunge, S. Jeon, S. Christen, C. Leslin, M. Holder, G.T. Taylor, P. Suarez, M. Varela, and S. Epstein. 2011. Protistan microbial observatory in the Cariaco Basin, Carribean. I. Pyrosequencing vs Sanger insights into species richness. ISME Journal 5: 1344–1356.

    Article  CAS  Google Scholar 

  • Erwin, J.A. 1973. Fatty acids in eukaryotic microorganism, 41–143. In: Erwin, JA editor. Lipids and Biomembranes of Eukaryotic Microorganisms. Academic Press New York.

    Google Scholar 

  • Fagerbakke, K.M., M. Heldal, and S. Norland. 1996. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquatic Microbial Ecology 10: 15–27.

    Article  Google Scholar 

  • Fenchel, T., and T.H. Blackburn. 1979. Bacteria and mineral cycling. London: Academic Press. 225 p.

    Google Scholar 

  • Gasol, J.M., and P.A. del Giorgio. 2000. Using flow cytometry for counting natural bacteria and understanding the structure of bacterial communities. Scienca Marina 64: 197–224.

    Google Scholar 

  • Gasol, J.M., U. Zweifel, F. Peters, J.A. Fuhrman, and A. Hagström. 1999. Significance of size and nucleic acid content heterogeneity, as measured by flow cytometry in natural planktonic bacteria. Applied and Environmental Microbiology 65: 4475–4483.

    CAS  Google Scholar 

  • Gast, V., and K. Gocke. 1988. Vertical distribution of number, biomass and size-class spectrum of bacteria in oxic/anoxic conditions in the central Baltic Sea. Marine Ecology Progress Series 45: 179–186.

    Article  Google Scholar 

  • Goldhammer, T., V. Brüchert, T.G. Ferdelman, and M. Zabel. 2010. Microbial sequestration of phosphorus in anoxic upwelling sediment. Nature Geosciences 3: 557–561.

    Article  CAS  Google Scholar 

  • Hahn, M.W., and M.G. Höfle. 2001. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiology Ecology 35: 113–121.

    Article  CAS  Google Scholar 

  • Harvey, H.R., R.D. Fallon, and J.S. Patton. 1986. The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochimica et Cosmochimica Acta 50: 795–804.

    Article  CAS  Google Scholar 

  • Hupper, M., and J. Lewandowski. 2008. Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. International Review of Hydrobiology 93: 415–432.

    Article  Google Scholar 

  • Jilbert, T., C.P. Slomp, B.G. Gustafsson, and W. Boer. 2011. Beyond the Fe-P-connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles. Biogeosciences 8: 1699–1720.

    Article  CAS  Google Scholar 

  • Jorgensen, B.B. 1982. Mineralisation of organic matter in the sea bed-the role of sulphate reduction. Nature 296: 643–645.

    Article  Google Scholar 

  • Karl, D.M., L. Berversdorf, K.N. Bjorkman, M.J. Church, A. Martinez, and E.F. DeLong. 2008. Aerobic production of methane in the sea. Nature Geosciences 1: 473–478.

    Article  CAS  Google Scholar 

  • Lam, P., and M.M.M. Kuypers. 2011. Microbial nitrogen cycling processes in oxygen minimum zones. Annual Review Marine Science 3: 317–345.

    Article  Google Scholar 

  • Li, W.K.W., B.D. Irwin, and P.M. Dickie. 1993. Dark fixation of 14C: variations related to biomass and productivity of phytoplankton and bacteria. Limnology and Oceanography 38: 483–494.

    Article  CAS  Google Scholar 

  • Madan, R., C. Pankhurst, B. Hawke, and S. Smith. 2002. Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biology and Biochemistry 34: 125–28.

    Article  CAS  Google Scholar 

  • McKindley, V.L., A.D. Peacock, and D.C. White. 2005. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biology and Biochemistry 37: 1946–1958.

    Article  Google Scholar 

  • Middelburg, J.J., C. Barranguet, H.T.S. Boschker, P.M.J. Herman, T. Moens, and C.H. Heip. 2000. The fate of intertidal microphybenthos carbon: an in situ 13C-labeling study. Limnology and Oceanography 45: 1224–1234.

    Article  CAS  Google Scholar 

  • Moodley, L., H.T.S. Boschker, J.J. Middelburg, R. Pel, P.M.J. Herman, E. de Deckere, and C.H. Heip. 2000. The ecological significance of benthic Foraminifera: 13C labeling experiments. Marine Ecology Progress Series 202: 289–295.

    Article  Google Scholar 

  • Naqvi, S.W.A., H.W. Bange, L. Farias, P.M.S. Monteiro, M.I. Scranton, and J. Zhang. 2010. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7: 2159–2190.

    Article  CAS  Google Scholar 

  • Noy-Meir, I. 1975. Stability of grazing systems: an application of predator-prey graphs. Journal of Ecology 63: 459–481.

    Article  Google Scholar 

  • Orsi, W., Y.C. Song, S. Hallam, and V. Edgcomb. 2012. Effects of oxygen minimum zone formation on communities of marine protists. ISME Journal 6: 1586–1601.

    Article  CAS  Google Scholar 

  • Park, J.S., and B.C. Cho. 2002. Active heterotrophic nanoflagellates in the hypoxic water-column of the eutrophic Masan Bay, Korea. Marine Ecology Progress Series 230: 35–45.

    Article  Google Scholar 

  • Parrish, C.C., G. Bodennec, and P. Gentien. 1994. Time courses of intracellular and extracellular lipid classes in batch cultures of the toxic dinoflagellate. Gymnodinium cf. nagasakiense Marine Chemistry 48: 71–82.

    Article  CAS  Google Scholar 

  • Ratledge, C. and Wilkinson, S. G. 1988. Microbial lipids. Academic press.

  • Ricciardi-Rigault, M., D.F. Bird, and Y.T. Prairie. 2000. Changes in viral and bacterial abundance with hypolimnetic oxygen depletion in a shallow eutrophic Lake Brome (Québec, Canada). Canadian Journal Fisheries and Aquatic Sciences 56: 1284–1290.

    Article  Google Scholar 

  • Schellenberger, S., S. Kolb, and H.L. Drake. 2010. Metabolic responses of novel cellulolytic and saccharolytic agricultural soil bacteria to oxygen. Environmental Microbiology 12: 845-–861.

    Article  CAS  Google Scholar 

  • Scott, J.H., and K.H. Nelson. 1994. A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens. Journal of Bacteriology 176: 3408–3411.

    CAS  Google Scholar 

  • Simon, M., and F. Azam. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201–213.

    Article  CAS  Google Scholar 

  • Sokal, R.R., and J.F. Rohlf. 1995. Biometry: the principles and practice of statistics in biological research, 3rd ed. New York: WH Freeman and Company. 850 p.

    Google Scholar 

  • Steen, H.B., E. Boye, and T. Godal. 1981. Applications of flow-cytometry to bacteria. Cytometry 2: 128–129.

    Google Scholar 

  • Tadonléké, D.R., D. Planas, and M. Lucotte. 2005. Microbial food webs in boreal humic lakes and reservoirs: ciliates as a major factor related to the dynamics of the most active bacteria. Microbial Ecology 49: 325–341.

    Article  Google Scholar 

  • Teece, M.A., M.L. Fogel, M.E. Dollhopf, and K.H. Nelson. 1999. Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Organic Geochemistry 30: 1571–1579.

    Article  CAS  Google Scholar 

  • Theodorou, M.E., I.R. Elrifi, D.H. Turpin, and W.C. Plaxton. 1991. Effects of Phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum. Plant Physiology 95: 1089–1095.

    Article  CAS  Google Scholar 

  • Troussellier, M., C. Courties, P. Lebaron, and P. Servais. 1999. Flow cytometric discrimination of bacterial populations in seawater based on SYTO 13 staining of nucleic acids. FEMS Microbiology Ecology 29: 319–330.

    Article  CAS  Google Scholar 

  • Tunlid, A. and White, D.C. 1992. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil, In Bollag JM, Stotzky G. editors, Soil Biochemistry, Marcel Dekker. p. 229–262.

  • Van den Meersche, K., P. van Rijswijk, K. Soetaert, and J.J. Middelburg. 2009. Autochthonous and allochthonous contributions to mesozooplankton diet in a tidal river and estuary: integrating carbon isotope and fatty acid constraints. Limnology and Oceanography 54: 62–74.

    Article  Google Scholar 

  • Van den Meersche, K., K. Soetaert, and J.J. Middelburg. 2011. Plankton dynamics in a estuarine plume: a mesocosm 13C and 15N tracer study. Marine Ecology Progress Series 429: 29–43.

    Article  Google Scholar 

  • Van Oevelen, D., L. Moodley, K. Soetaert, and J.J. Middelburg. 2006. The trophic significance of bacterial carbon in a marine intertidal sediment: results of an in situ stable isotope labeling study. Limnology and Oceanography 51: 2349–2359.

    Article  Google Scholar 

  • Varela, M.M., H.M. van Aken, E. Sintes, T. Reinthaler, and G.J. Herndl. 2011. Contribution of Crenarchaeota and Bacteria to autotrophy in the North Atlantic interior. Environmental Microbiology 13: 1524–1533.

    Article  Google Scholar 

  • Volkman, J.K., S.M. Barrett, S.I. Blackburn, M.P. Mansour, E.L. Sikes, and F. Gelin. 1998. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry 29: 1163–1179.

    Article  CAS  Google Scholar 

  • Wangersky, P.J., and W.J. Cunningham. 1957. Time lag in prey-predator population models. Ecology 38: 136–139.

    Article  Google Scholar 

  • Weinbauer, M.G., and M.G. Höfle. 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Applied and Environmental Microbiology 64: 431–438.

    CAS  Google Scholar 

  • Whiticar, M.J. 1999. Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane. Chemical Geology 161: 291–31.

    Article  CAS  Google Scholar 

  • Wright, J.J., K.M. Konwar, and S.J. Hallam. 2012. Microbial ecology of expanding oxygen-minimum zones. Nature Review Microbiology 10: 381–394.

    CAS  Google Scholar 

  • Wu, R.S.S. 2002. Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin 45: 35–45.

    Article  CAS  Google Scholar 

  • Yakushev E.V. and Newton A. 2013. Redox interfaces in marine waters, In Yakushev E.V. (ed) Chemical structure of pelagic redox interfaces. Observations and modelling. Springer, 290 p.

  • Zak, D.R., D.B. Ringelberg, K.S. Pregitzer, D.L. Randlett, D.C. White, and P.S. Curtis. 1996. Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecological Applications 6: 257–262.

    Article  Google Scholar 

Download references

Acknowledgments

R.D.T. was supported during his 3-month scientific visit at the Centre for Estuarine and Marine Ecology (Yerseke, The Netherlands) by funding from the Mission des Relations Internationales of INRA (Institut National de la Recherche Agronomique, France). He thanks Paul del Giorgio for hosting him at UQAM and providing him with a research facility. We also thank journal reviewers for their constructive comments which have helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy D. Tadonléké.

Additional information

Communicated by Zhanfei Liu

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadonléké, R.D., Pollet, T., Van Rijswijk, P. et al. Effects of Oxygen Loss on Carbon Processing and Heterotrophic Prokaryotes from an Estuarine Ecosystem: Results from Stable Isotope Probing and Cytometry Analyses. Estuaries and Coasts 39, 992–1005 (2016). https://doi.org/10.1007/s12237-015-0053-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-0053-1

Keywords

Navigation