Advertisement

Estuaries and Coasts

, Volume 39, Issue 3, pp 875–876 | Cite as

Response to “Comment on ‘Seagrass Viviparous Propagules as a Potential Long-Distance Dispersal Mechanism’ by A. C. G. Thomson et al”

  • Alexandra C. G. ThomsonEmail author
  • Paul H. York
  • Tim M. Smith
  • Craig D. H. Sherman
  • David J. Booth
  • Michael J. Keough
  • D. Jeff Ross
  • Peter I. Macreadie
Short Communication

Our original article (Thomson et al. 2015) presented data exploring Zostera nigricaulis asexually produced vegetative propagules as a potential long-distance dispersal mechanism for seagrasses. We found that the vegetative propagules of Z. nigricaulis were able to maintain buoyancy and photosynthetic health for more than 85 days, which suggested capacity for long-distance dispersal. While long-term establishment of propagules in situ was not successful due to poor seasonal conditions, highly successful establishment and growth in mesocosm-based experiments gave support for positive establishment opportunities. Resilience of seagrass meadows relies on the ability of seagrass to successfully recolonise denuded areas or disperse to new areas (Macreadie et al. 2014), and this research demonstrated that although successful establishment may be rare, vegetative propagules show re-establishment potential for declining seagrass populations. These results are consistent with results found by...

Keywords

Seagrass Propagules Dispersal Zostera Resilience 

References

  1. Macreadie, P.I., P.H. York, and C.D. Sherman. 2014. Resilience of Zostera muelleri seagrass to small‐scale disturbances: the relative importance of asexual versus sexual recovery. Ecology and evolution 4: 450–461.CrossRefGoogle Scholar
  2. Rousset, F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228.Google Scholar
  3. Sinclair, E.A., R. Hovey, J. Statton, M.W. Fraser, M.L. Cambridge, and G.A. Kendrick. 2015. Comment on ‘Seagrass Viviparous Propagules as a Potential Long-Distance Dispersal Mechanism’by ACG Thomson et al. Estuaries and Coasts 1–4. doi: 10.1007/s12237-015-9941-7.
  4. Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.CrossRefGoogle Scholar
  5. Stafford-Bell, R., A. Chariton, and R. Robinson. 2015. Prolonged buoyancy and viability of Zostera muelleri Irmisch ex Asch. vegetative fragments indicate a strong dispersal potential. Journal of Experimental Marine Biology and Ecology 464: 52–57.CrossRefGoogle Scholar
  6. Thomson, A.C., P.H. York, T.M. Smith, C.D. Sherman, D.J. Booth, M.J. Keough, D.J. Ross, and P.I. Macreadie. 2015. Seagrass viviparous propagules as a potential long-distance dispersal mechanism. Estuaries and Coasts 38: 927–940.Google Scholar

Copyright information

© Coastal and Estuarine Research Federation 2015

Authors and Affiliations

  • Alexandra C. G. Thomson
    • 1
    Email author
  • Paul H. York
    • 2
    • 3
  • Tim M. Smith
    • 2
    • 4
  • Craig D. H. Sherman
    • 2
  • David J. Booth
    • 5
  • Michael J. Keough
    • 4
  • D. Jeff Ross
    • 6
  • Peter I. Macreadie
    • 1
    • 7
  1. 1.Plant Functional Biology and Climate Change Cluster (C3)University of Technology SydneyBroadwayAustralia
  2. 2.Deakin University, Geelong, AustraliaSchool of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus)GeelongAustralia
  3. 3.Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER)James Cook UniversityCairnsAustralia
  4. 4.School of BioSciencesUniversity of MelbourneMelbourneAustralia
  5. 5.School of Life SciencesUniversity of Technology SydneyBroadwayAustralia
  6. 6.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia
  7. 7.Deakin University, Geelong, AustraliaSchool of Life and Environmental Sciences, Centre for Integrative Ecology, (Burwood Campus)BurwoodAustralia

Personalised recommendations