Skip to main content

Weak Correlation Between Methane Production and Abundance of Methanogens Across Three Brackish Marsh Zones in the Min River Estuary, China

Abstract

Methane production is influenced by the abundance of methanogens and the availability of substrates. Sulfate-reducing bacteria (SRB) also play an important role in the anaerobic decomposition of organic matter. However, the relationships between methane production and abundance of methanogen and pore water substrates in estuarine brackish marshes are poorly characterized, and even to our knowledge, no published research has explored the relationship between methane production rate and pore water dimethyl sulfide (DMS) concentration. We investigated methane production rate, abundances of methanogens and SRB, sediment organic carbon contents, and concentrations of pore water substrates (acetate and DMS) and terminal electron acceptors (SO4 2−, NO3 , and Fe3+) at a brackish marsh landscape dominated by Phragmites australis marsh, Cyperus malaccensis marsh, and Spartina alterniflora marsh in the Min River estuary, southeast China. The average rates of methane production over the entire 30 cm of the sediment profile (5 cm sampling interval) in the three marshes were 0.142, 0.058, and 0.067 μg g−1 day−1, respectively. The abundance of both methanogens and SRB in the sediment of the P. australis marsh with the highest sediment organic carbon content was higher than in the C. malaccensis and S. alterniflora marshes. Mean pore water DMS concentrations over the entire 30 cm of the sediment profile under the S. alterniflora marsh were higher than those in the C. malaccensis marsh and P. australis marsh. Methane production rate correlated weakly with the abundance of methanogens across the three marsh zones together, but did not correlate with the concentrations of pore water acetate and DMS. Our results suggest that the abundance of methanogens is controlled by sediment organic carbon supply, and further, methane production is affected by the abundance of methanogens in the subtropical estuarine brackish marshes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ansraek, J., and T.H. Blackburn. 1980. A method for the analysis of acetate turnover in a coastal marine sediment. Microb Ecol 5: 253–264.

    Article  Google Scholar 

  2. Avery, G.B., R.D. Shannon, J.R. White, C.S. Martens, and M.J. Alperin. 1999. Effect of seasonal changes in the pathways of methanogenesis on the δ13C values of pore water methane in a Michigan peatland. Glob Biogeochem Cycles 13: 475–484.

    CAS  Article  Google Scholar 

  3. Avery, G.B., R.D. Shannon, J.R. White, C.S. Martens, and M.J. Alperin. 2003. Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction. Biogeochemistry 62: 19–37.

    Article  Google Scholar 

  4. Bai, J.H., H.O. Yang, W. Deng, Y.M. Zhu, X.L. Zhang, and Q.G. Wang. 2005. Spatial distribution characteristics of organic matter and total nitrogen of marsh sediments in river marginal wetlands. Geoderma 124: 181–192.

    CAS  Article  Google Scholar 

  5. Cadillo-Quiroz, H., S. Brauer, E. Yashiro, C. Sun, J. Yavitt, and S. Zinder. 2006. Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol 8: 1428–1440.

    CAS  Article  Google Scholar 

  6. Conrad, R., H.P. Mayer, and M. Wüst. 1989. Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial associations in anoxic paddy sediment. FEMS Microbiol Lett 62: 265–274.

    CAS  Article  Google Scholar 

  7. Dacey, J.W.H., G.M. King, and S.G. Wakeham. 1987. Factors controlling emission of dimethylsulphide from salt marshes. Nature 330: 643–645.

    CAS  Article  Google Scholar 

  8. Ding, W.X., Z.C. Cai, H. Tsuruta, and X. Li. 2003. Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 51: 167–173.

    CAS  Article  Google Scholar 

  9. Duddleston, K.N., M.A. Kinney, R.P. Kiene, and M.E. Hines. 2002. Anaerobic microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic end product. Global Biogeochemical Cycles 16: 11-1–11-9, doi:10.1029/2001GB001402.

  10. Freitag, T.E., and J.I. Prosser. 2009. Correlation of methane production and functional gene transcriptional activity in a peat sediment. Appl Environ Microbiol 75: 6679–6687.

    CAS  Article  Google Scholar 

  11. Giani, L., K. Dittrich, A. Martsfeld-Hartmann, and G. Peters. 1996. Methanogenesis in saltmarsh sediment of the North Sea coast of Germany. Eur J Sediment Sci 47: 175–182.

    CAS  Google Scholar 

  12. Ho, T.Y., M.I. Scranton, and G.T. Taylor. 2002. Acetate cycling in the water column of the Cariaco Basin: seasonal and vertical variability and implication for carbon cycling. Limnol Oceanogr 47: 1119–1128.

    CAS  Article  Google Scholar 

  13. Hoehler, T.M., D.B. Albert, M.J. Alperin, and C.S. Martens. 1999. Acetogenesis from CO2 in an anoxic marine sediment. Limnol Oceanogr 44: 662–667.

    CAS  Article  Google Scholar 

  14. Holmer, M., and E. Kristensen. 1994. Co-existence of sulfate reduction and methane production in an organic rich sediment. Mar Ecol Prog Ser 107: 177–184.

    CAS  Article  Google Scholar 

  15. IPCC. 2007. Climate change: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  16. Jin, X.Y., D.X. Yuan, M. Chen, and M. Li. 2004. Distribution of dimethylsulfide of Xiamen sea surface water in spring. Mar Environ Sci 23: 12–15 (in Chinese).

    CAS  Google Scholar 

  17. Keller, M.D., W.K. Bellows, and R.R.L. Guillard. 1989. Dimethyl sulfide production in marine phytoplankton. In Biogenic sulfur in the environment, ed. E.S. Saltzman and W.J. Cooper, 167–200. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  18. Kim, S.Y., S.H. Lee, C. Freeman, N. Fenner, and H. Kang. 2008. Comparative analysis of sediment microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands. Sed Biol Biochem 40: 2874–2880.

    CAS  Article  Google Scholar 

  19. Kondo, R., D.B. Nedwell, K.J. Purdy, and S.Q. Silva. 2004. Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol J 21: 145–157.

    CAS  Article  Google Scholar 

  20. Koretsky, C., P.V. Cappellen, T.J. DiChristina, J.E. Kostka, K.L. Lowe, C.M. Moore, A.N. Roychoudhury, and E. Viollier. 2005. Salt marsh pore water geochemistry does not correlate with microbial community structure. Estuar Coast Shelf Sci 62: 233–251.

    CAS  Article  Google Scholar 

  21. Kotsyurbenko, O.R., K.J. Chin, M.V. Glagolev, and S. Stubner. 2004. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West–Siberian peat bog. Environ Microbiol 6: 1159–1173.

    CAS  Article  Google Scholar 

  22. Lee, R.Y., P.W. Porubsky, I.C. Feller, K.L.McKee, and S.B. Joye. 2008. Porewater biogeochemistry and soil metabolism in dwarf red mangrove habitats (Twin Cays, Belize). Biogeochemistry 87:181–198.

  23. Leloup, J., F. Petit, D. Boust, J. Deloffre, G. Bally, O. Clarisse, and L. Quillet. 2005. Dynamics of sulfate-reducing Microorganisms (dsrAB genes) in two contrasting mudflats of the Seine Estuary (France). Microb Ecol 50: 307–314.

    CAS  Article  Google Scholar 

  24. Leloup, J., A. Loy, N.J. Knob, C. Borowski, M. Wagner, and B.B. Jørgensen. 2007. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9: 131–142.

    CAS  Article  Google Scholar 

  25. Leloup, J., H. Fossing, K. Kohls, L. Holmkvist, C. Borowski, and B.B. Jørgensen. 2009. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol 11: 1278–1291.

    CAS  Article  Google Scholar 

  26. Liu, X.Z., L.M. Zhang, J.I. Prosser, and J.Z. He. 2009. Abundance and community structure of sulfate-reducing prokaryotes in a paddy sediment of southern China under different fertilization regimes. Sed Biol Biochem 41: 687–694.

    CAS  Article  Google Scholar 

  27. Liu, D.Y., W.X. Ding, Z.J. Jia, and Z.C. Cai. 2011. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China. Biogeosciences 8: 329–338.

    CAS  Article  Google Scholar 

  28. Lyimo, T.J., A. Pol, and H.J.M. den Camp. 2002. Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. Ambio 31: 614–616.

    Article  Google Scholar 

  29. Michelson, A.R., M.E. Jacobson, M.I. Scranton, and J.E. Mackjn. 1989. Modeling the distribution of acetate in anoxic estuarine sediments. Limnol Oceanogr 34: 747–757.

    CAS  Article  Google Scholar 

  30. Morrissey EM, Berrier DJ, Neubauer SC, Franklin RB (2013) Using microbial communities and extracellular enzymes to link sediment organic matter characteristics to greenhouse gas production in a tidal freshwater wetland. Biogeochemistry 1–18

  31. Nedwell, D.B., and I.M. Banat. 1981. Hydrogen as an electron donor for sulfate-reducing bacteria in slurries of salt marsh sediment. Microb Ecol 7: 305–313.

    CAS  Article  Google Scholar 

  32. Oremland, R.S. 1988. Biogeochemistry of methanogenic bacteria. In Biology of anaerobic microorganisms, ed. A.J.B. Zehnder, 641–705. New York: John Wiley.

    Google Scholar 

  33. Oremland, R.S., and S. Polcin. 1982. Methanogenesis and sulfate reduction: competitive and non-competitive substrates in estuarine sediments. Appl Environ Microbiol 44: 1270–1276.

    CAS  Google Scholar 

  34. Sansone, E.J. 1986. Depth distribution of short-chain organic acid turnover in Cape Lookout Bight sediments. Geochim Cosmochim Acta 50: 99–105.

    CAS  Article  Google Scholar 

  35. Shannon, R.D., and J.R. White. 1996. The effects of spatial and temporal variations in acetate and sulfate on methane cycling in two Michigan peatlands. Limnol Oceanogr 41: 435–443.

    CAS  Article  Google Scholar 

  36. Shaw, D.G., and D.J. McIntosh. 1990. Acetate in recent anoxic sediments: direct and indirect measurements of concentration and turnover rates. Estuar Coast Shelf Sci 31: 775–788.

    CAS  Article  Google Scholar 

  37. Sørensen, J. 1988. Dimethylsulfide and methane thiol in sediment pore water of a Danish estuary. Biogeochemistry 6: 201–210.

    Article  Google Scholar 

  38. Sorrell, B., H. Brix, H.H. Schierup, and B. Lorenzen. 1997. Die-back of Phragmites australis: influence on the distribution and rate of sediment methanogenesis. Biogeochemistry 36: 173–188.

    Article  Google Scholar 

  39. Steinberg, L.M., and J.M. Regan. 2009. mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75: 4435–4442.

    CAS  Article  Google Scholar 

  40. Stookey, L.L. 1970. Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42: 779–781.

    CAS  Article  Google Scholar 

  41. Tong, C., W.Q. Wang, C.S. Zeng, and R. Marrs. 2010. Methane emissions from a tidal marsh in the Min River estuary, south-east China. J Environ Health Part A 45: 506–516.

    CAS  Article  Google Scholar 

  42. Tong, C., L.H. Zhang, W.Q. Wang, V. Gauci, R. Marrs, B.G. Liu, R.X. Jia, and C.S. Zeng. 2011. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical tidal estuarine marsh. Environ Res 111: 909–916.

    CAS  Article  Google Scholar 

  43. Visscher, P.T., L.K. Baumgartne, D.H. Buckley, D.R. Rogers, M.E. Hogan, C.D. Raleigh, K.A. Turk, and D.J. Des Marais. 2003. Dimethyl sulphide and methanethiol formation in microbial mats: potential pathways for biogenic signatures. Environ Microbiol 5:296–308.

  44. Wachinger, G., S. Fiedler, K. Zepp, A. Gattinger, M. Sommer, and K. Roth. 2000. Variability of sediment methane production on the micro-scale: spatial association with hot spots of organic materials and archaeal populations. Sed Biol Biochem 32: 1121–1130.

    CAS  Article  Google Scholar 

  45. Wassmann, R., H.U. Neue, C. Bueno, R.S. Lantin, M.C.R. Alberto, L.V. Buendia, K. Bronson, H. Papen, and H. Rennengerg. 1998. Methane production capacities of different rice sediment derived from inherent and exogenous substrates. Plant Sed 203: 227–237.

    CAS  Google Scholar 

  46. Watanabe, T., M. Kimura, and S. Asakawa. 2006. Community structure of methanogenic archaea in paddy field sediment under double cropping (rice–wheat). Sed Biol Biochem 38: 1264–1274.

    CAS  Article  Google Scholar 

  47. Watanabe, T., V.R. Cahyani, J. Murase, E. Ishibashi, M. Kimura, and S. Asakawa. 2009. Methanogenic archaeal communities developed in paddy fields in the Kojima Bay polder, estimated by denaturing gradient gel electrophoresis, real-time PCR and sequencing analyses. Sed Sci Plant Nutr 55: 73–79.

    CAS  Article  Google Scholar 

  48. Wellsbury, P., and R.J. Parkes. 1995. Acetate bioavailability and turnover in an estuarine sediment. FEMS Microbiol Ecol 17: 85–94.

  49. Weston, N.B., W.P. Porubsky, V.A. Samatkin, M. Erickson, S.E. Macavoy, and S.B. Joye. 2006. Porewater stoichiometry of terminal metabolic products, sulfate, and dissolved organic carbon and nitrogen in estuarine intertidal creek-bank sediments. Biogeochemistry 77: 375–408.

    CAS  Article  Google Scholar 

  50. Wilms, R., H. Sass, B. Köpke, H. Cypionka, and B. Engelen. 2007. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59: 611–621.

    CAS  Article  Google Scholar 

  51. Wu, H.G., M. Green, and M.I. Scranton. 1997. Acetate cycling in the water column and surface sediment of Long Island Sound following a bloom. Limnol Oceanogr 42: 705–713.

    CAS  Article  Google Scholar 

  52. Zeleke J, Sheng Q, Wang JG, Huang MY, Xia F, Wu JH, Quan ZX (2013) Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Front Microbiol 4 doi:10.3389/fmicb.2013.00243.

Download references

Acknowledgments

This work was financially supported by grants from the National Science Foundation of China (Grant No. 41071148) and the Program for Innovative Research Team in Fujian Normal University (IRTL1205). We thank Mr. Qinghua He, Zichuan Zhang, Ms. Yi Jia, Hongyu Yang, and Xiaoying Jin for their help in the field and lab. We would also sincerely thank the associate editor, Scott C. Neubauer, and two anonymous reviewers for their very valuable comments and careful corrections that have improved the manuscript greatly.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Tong.

Additional information

Communicated by Scott C. Neubauer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tong, C., She, C.X., Yang, P. et al. Weak Correlation Between Methane Production and Abundance of Methanogens Across Three Brackish Marsh Zones in the Min River Estuary, China. Estuaries and Coasts 38, 1872–1884 (2015). https://doi.org/10.1007/s12237-014-9930-2

Download citation

Keywords

  • Methanogens
  • Sulfate-reducing bacteria
  • Substrate
  • Electron acceptor
  • Dimethyl sulfide
  • Tidal marsh