Estuaries and Coasts

, Volume 38, Issue 5, pp 1744–1763 | Cite as

Connecting Groundwater and Surface Water Sources in Groundwater Dependent Coastal Wetlands and Estuaries: Sian Ka’an Biosphere Reserve, Quintana Roo, Mexico

  • David Lagomasino
  • René M. Price
  • Jorge Herrera-Silveira
  • Fernando Miralles-Wilhelm
  • Gonzalo Merediz-Alonso
  • Yadira Gomez-Hernandez


Groundwater and surface water samples were collected in five different regions of the Sian Ka’an Biosphere Reserve (SKBR) along the eastern coast of the Yucatan Peninsula in Quintana Roo, Mexico. Samples were analyzed for major ions, total phosphorus, total nitrogen, δ18O, and δ2H. Chemical modeling and a coupled principal component analysis and end-member mixing model were used to identify three groundwater sources that discharge to the coastal wetlands and estuaries of the SKBR. A sulfate-dominated and a calcium-dominated fresh groundwater source were found to contribute significantly to the headwaters of a southern and northern SKBR estuary, respectively. In the northern part of the Reserve, an elevated road disrupts the flow of freshwater through the estuarine zone creating hypersaline conditions and mangrove dead-zones. In a more pristine estuary to the south, coastal groundwater discharge associated with petens (tree islands) accounted for ∼20 % of the surface water in the mid-estuary. This coastal groundwater discharge from the petens adds a significant amount of phosphorus to the surface water in the estuary relative to the upstream and downstream sources. The lower alkalinity measured in the surface water relative to the high-alkalinity groundwater, despite clear indication of groundwater discharge, suggests that inorganic carbon export through degassing of CO2 could represent important carbon process in mangrove ecosystems. Our results indicate an important groundwater discharge mechanism that may facilitate nutrient delivery to karstic, oligotrophic estuaries when upland and marine nutrient supplies are depleted.


Groundwater discharge Oligotrophic Eutrophic Phosphorus Mangroves Hypersaline 



This research was supported directly by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Grant No. DBI-0620409 and the NASA WaterSCAPES program under Grant No. NNX-10AQ13A. Field and travel support were provided by the Comisión Nacional de Áreas Naturales Protegidas (CONANP) and Amigos de Sian Ka’an in Cancun, Mexico; and the Centro de Investigacion y de Estudios Avanzados (CINVESTAV) Unidad Merida in Merida, Mexico. Additional financial support was provided by the Florida Education Fund McKnight Dissertation Year Fellowship. This is contribution number 690 from the Southeast Environmental Research Center at Florida International University.


  1. Abesser, C., R. Robinson, and C. Soulsby. 2006. Iron and manganese cycling in the storm runoff of a Scottish upland catchment. Journal of Hydrology 326: 59–78. doi: 10.1016/j.jhydrol.2005.10.034.CrossRefGoogle Scholar
  2. Adame, M.F., J.B. Kauffman, I. Medina, J.N. Gamboa, O. Torres, J.P. Caamal, M. Reza, and J. Herrera-Silveira. 2013. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PloS One 8: e56569.CrossRefGoogle Scholar
  3. Back, W., B.B. Hanshaw, J.S. Herman, and J.N. Van Driel. 1986. Differential dissolution of a pleistocene reef in the ground-water mixing zone of coastal Yucatan, Mexico. Geology 14: 137–140. doi: 10.1130/0091-7613(1986)14<137:DDOAPR>2.0.CO;2.CrossRefGoogle Scholar
  4. Baker, M.A., and P. Vervier. 2004. Hydrological variability, organic matter supply and denitrification in the garonne river ecosystem. Freshwater Biology 49: 181–190. doi: 10.1046/j.1365-2426.2003.01175.x.CrossRefGoogle Scholar
  5. Bauer-Gottwein, P., B.N. Gondwe, G. Charvet, L. Maran, M. Rebolledo-Vieyra, and G. Merediz-Alonso. 2011. Review: the Yucatan Peninsula karst aquifer, Mexico. Hydrogeology Journal. 19: 507–524. doi: 10.1007/s10040-010-0699-5.
  6. Beddows, P.A. 2004. Groundwater hydrology of a coastal conduit carbonate aquifer: Caribbean Coast of the Yucatan Peninsula, Mexico. Evanston, IL: Northwestern University.Google Scholar
  7. Beddows, P.A., P.L. Smart, F.F. Whitaker, and S.L. Smith. 2007. Decoupled fresh–saline groundwater circulation of a coastal carbonate aquifer: spatial patterns of temperature and specific electrical conductivity. Journal of Hydrology 346: 18–32. doi: 10.1016/j.jhydrol.2007.08.013.CrossRefGoogle Scholar
  8. Bouillon, S., A.V. Borges, E. Castañeda Moya, K. Diele, T. Dittmar, N.C. Duke, E. Kristensen, S.Y. Lee, C. Marchand, J.J. Middelburg, V.H. Rivera-Monroy, T.J. Smith III, R.R. Twilley. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22(2). doi: 10.1029/2007GB003052.
  9. Childers, D.L., J.N. Boyer, S.E. Davis, C.J. Madden, D.T. Rudnick, and F.H. Sklar. 2006. Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnology and Oceanography 51: 602–616.CrossRefGoogle Scholar
  10. Christophersen, N., and R.P. Hooper. 1992. Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem. Water Resources Research 28: 99–107. doi: 10.1029/91WR02518.CrossRefGoogle Scholar
  11. Christophersen, N., C. Neal, R.P. Hooper, R.D. Vogt, and S. Andersen. 1990. Modelling streamwater chemistry as a mixture of soilwater end-members—a step towards second-generation acidification models. Journal of Hydrology 116: 307–320. doi: 10.1016/0022-1694(90)90130-P.CrossRefGoogle Scholar
  12. Doctor, D., E.C. Alexander, M. Petriä•, J. Kogovå¡ek, J. Urbanc, S. Lojen, and W. Stichler. 2006. Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers. Hydrogeology Journal 14: 1171–1191. doi: 10.1007/s10040-006-0031-6.CrossRefGoogle Scholar
  13. Eamus, D., and R. Froend. 2006. Groundwater-dependent ecosystems: the where, what and why of GDEs. Australian Journal of Botany 54: 91–96.CrossRefGoogle Scholar
  14. Foster, S., and P. Chilton. 2003. Groundwater: the processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society, Biological Sciences 358: 1957–1972.CrossRefGoogle Scholar
  15. Foster, D., F. Swanson, J. Aber, I. Burke, N. Brokaw, D. Tilman, and A. Knapp. 2003. The importance of land-use legacies to ecology and conservation. Bioscience 53: 77–88.CrossRefGoogle Scholar
  16. Fourqurean, J.W., J.C. Zieman, and G.V.N. Powell. 1992. Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. Marine Biology 114: 57–65. doi: 10.1007/BF00350856.Google Scholar
  17. Fourqurean, J.W., G.A. Kendrick, L.S. Collins, R.M. Chambers, and M.A. Vanderklift. 2012. Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay. Marine and Freshwater Resources. 63: 967–983.CrossRefGoogle Scholar
  18. Frankovich, T.A., and R.D. Jones. 1998. A rapid, precise and sensitive method for the determination of total nitrogen in natural waters. Marine Chemistry 60: 227–234. doi: 10.1016/S0304-4203(97)00100-X.CrossRefGoogle Scholar
  19. Garrett, C. G., V. M. Vulava, T. J. Callahan, and M. L. Jones (2012). Groundwater–surface water interactions in a lowland watershed: source contribution to stream flow. Hydrological Processes. 3195, doi: 10.1002/hyp.8257.
  20. Gondwe, B.R.N., S. Lerer, S. Stisen, L. Marín, M. Rebolledo-Vieyra, G. Merediz-Alonso, and P. Bauer-Gottwein. 2010. Hydrogeology of the south-eastern Yucatan Peninsula: new insights from water level measurements, geochemistry, geophysics and remote sensing. Journal of Hydrology 389: 1–17. doi: 10.1016/j.jhydrol.2010.04.044.CrossRefGoogle Scholar
  21. Gondwe, B.R.N., G. Merediz-Alonso, and P. Bauer-Gottwein. 2011. The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst. Journal of Hydrology 400: 24–40. doi: 10.1016/j.jhydrol.2011.01.023.CrossRefGoogle Scholar
  22. Halse, S., J. Ruprecht, and A. Pinder. 2003. Salinisation and prospects for biodiversity in rivers and wetlands of south-west Western Australia. Australian Journal of Botany 51: 673–688.CrossRefGoogle Scholar
  23. Herrera-Silveira, J., I. Medina-Gomez, and R. Colli. 2002. Trophic status based on nutrient concentration scales and primary producers community of tropical coastal lagoons influenced by groundwater discharges. Hydrobiologia 475–476: 91–98. doi: 10.1023/A:1020344721021.CrossRefGoogle Scholar
  24. Herrera-Silveira, J.A., F.A. Comin, N. Aranda-Cirerol, L. Troccoli, and L. Capurro. 2004. Coastal water quality assesment in the Yucatan Peninsula: management implications. Ocean and Coastal Management 47: 625–639.Google Scholar
  25. Hooper, R.P., N. Christophersen, and N.E. Peters. 1990. Modelling streamwater chemistry as a mixture of soilwater end-members—an application to the Panola Mountain catchment, Georgia, U.S.A. Journal of Hydrology 116: 321–343. doi: 10.1016/0022-1694(90)90131-G.CrossRefGoogle Scholar
  26. Jensen, H.S., K.J. McGlathery, R. Marino, and R.W. Howarth. 1998. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds. Limnology and Oceanography 43: 799–810.CrossRefGoogle Scholar
  27. Lachniet, M.S., and W.P. Patterson. 2009. Oxygen isotope values of precipitation and surface waters in northern central America (Belize and Guatemala) are dominated by temperature and amount effects. Earth and Planetary Science Letters 284: 435–446. doi: 10.1016/j.epsl.2009.05.010.CrossRefGoogle Scholar
  28. Lefticariu, M., E.C. Perry, W.C. Ward, and L. Lefticariu. 2006. Post-Chicxulub depositional and diagenetic history of the northwestern Yucatan Peninsula Mexico. Sedimentological Geology. 183: 51–69. doi: 10.1016/j.sedgeo.2005.09.008.CrossRefGoogle Scholar
  29. Lesser, J. 1976. Estudio hidrogeologico e hidrogeoquimico de la Peninsula de Yucatan. Proyecto Conacyt-NSF 704:Google Scholar
  30. Liu, F., M. W. Williams and N. Caine. 2004. Source waters and flow paths in an alpine catchment, Colorado Front Range, USA. Water Resources Research. 40: W09401, doi: 10.1029/2004WR003076
  31. Maher, D.T., I.R. Santos, L. Golsby-Smith, J. Gleeson, and B.D. Eyre. 2013. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink? Limnology and Oceanography 58(2): 475–488. doi: 10.4319/lo.2013.58.2.0475.Google Scholar
  32. Marfia, A.M., R.V. Krishnamurthy, E.A. Atekwana, and W.F. Panton. 2004. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, Central America. Applied Geochemistry 19: 937–946. doi: 10.1016/j.apgeochem.2003.10.013.CrossRefGoogle Scholar
  33. Medina-Gómez, I., and J.A. Herrera-Silveira. 2003. Spatial characterization of water quality in a karstic coastal lagoon without anthropogenic disturbance: a multivariate approach. Estuarine, Coastal and Shelf Science 58: 455–465. doi: 10.1016/S0272-7714(03)00112-4.CrossRefGoogle Scholar
  34. Metcalfe, C.D., P.A. Beddows, G.G. Bouchot, T.L. Metcalfe, H. Li, and H. Van Lavieren. 2011. Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula Mexico. Journal of Environmental Pollution. 159: 991–997. doi: 10.1016/j.envpol.2010.11.031.CrossRefGoogle Scholar
  35. Middelburg, J., J. Nieuwenhuize, F. Slim, and B. Ohowa. 1996. Sediment biogeochemistry in an East African mangrove forest (Gazi Bay, Kenya). Biogeochemistry 34: 133–155. doi: 10.1007/BF00000899.CrossRefGoogle Scholar
  36. Moran, D. 2010. Carbon dioxide degassing in fresh and saline water. I: degassing performance of a cascade column. Aquacultural Engineering 43(1): 29–36.CrossRefGoogle Scholar
  37. Murray, B.B.R., M.J.B. Zeppel, G.C. Hose, and D. Eamus. 2003. Groundwater-dependent ecosystems in Australia: it’s more than just water for rivers. Ecological Management and Restoration 4: 110–113. doi: 10.1046/j.1442-8903.2003.00144.x.CrossRefGoogle Scholar
  38. Mutchler, T., K.H. Dunton, A. Townsend-Small, S. Fredriksen, and M.K. Rasser. 2007. Isotopic and elemental indicators of nutrient sources and status of coastal habitats in the Caribbean Sea, Yucatan Peninsula, Mexico. Estuarine, Coastal and Shelf Science 74: 449–457. doi: 10.1016/j.ecss.2007.04.005.CrossRefGoogle Scholar
  39. Olmsted, I. C., and R. Duran. 1990. Vegetacion de Sian Ka’an. In D. Navarro and J. Robinson [eds.], Diversidad Biologica en Sian Ka’an, Quintana Roo, Mexico. Programs for Studies in Tropical Conservation, University of Florida.Google Scholar
  40. Ovalle, A.R.C., C.E. Rezende, L.D. Lacerda, and C.A.R. Silva. 1990. Factors affecting the hydrochemistry of a mangrove tidal creek, Sepetiba Bay, Brazil. Estuarine, Coastal and Shelf Science 31: 639–650. doi: 10.1016/0272-7714(90)90017-L.CrossRefGoogle Scholar
  41. Parkhurst, D.L. and C.A.J. Appelo. 1999. User's guide to PHREEQC (version 2) - a computer program for speciation, reaction-path, 1Dtransport, and inverse geochemical calculations. US Geolological Survery Water Resources Investigation Report 99–4259, 312pGoogle Scholar
  42. Perry, E., L. Marin, J. McClain, and G. Velazquez. 1995. Ring of Cenotes (sinkholes), northwest Yucatan, Mexico: its hydrogeologic characteristics and possible association with the Chicxulub impact crater. Geology 23: 17–20. doi: 10.1130/0091-7613(1995)023<0017:ROCSNY>2.3.CO;2.CrossRefGoogle Scholar
  43. Perry, E., G. Velazquez-Oliman, and L. Marin. 2002. The hydrogeochemistry of the karst aquifer system of the Northern Yucatan Peninsula Mexico. International Geology Review. 44: 191–221. doi: 10.2747/0020-6814.44.3.191.CrossRefGoogle Scholar
  44. Perry, E. M., G. Velazquez-Oliman, and R. A. Socki. 2003. Hydrogeology of the Yucatan Peninsula, p. 115–138. In A. Gomez-Pompa, M. F. Allen, S. L. Fedick and J. J. Jimenez-Osornio [eds.], The Lowland Mayan Area: Three Millennia at the Human-Wildland Interface. Food Products Press.Google Scholar
  45. Perry, E., A. Paytan, B. Pedersen, and G. Velazquez-Oliman. 2009. Groundwater geochemistry of the Yucatan Peninsula Mexico: constraints on stratigraphy and hydrogeology. Journal of Hydrology 367: 27–40. doi: 10.1016/j.jhydrol.2008.12.026.CrossRefGoogle Scholar
  46. Perry, E. C., Velazquez-Oliman, G., and Wagner, N. 2011. Preliminary investigation of groundwater and surface water geochemistry in Campeche and southern Quintana Roo. In Water Resources in México: Scarcity, Degradation, Stress, Conflicts, Management and Policy. Ursula Oswald Spring Ed. Springer-Verlag. 522p. pp 87–97Google Scholar
  47. Pope, K. O., A. C. Ocampo, A. G. Fischer, F. J. Vega, D. E. Ames, D. T. King, B. W. Fouke, R. J. Wachtman, and G. Kletetschka (2005). Chicxulub impact ejecta deposits in southern Quintana Roo, Mexico, and central Belize, p. 171. In T. Kenkman, F. Horz and A. Deutsch [eds.], Large meterorite impacts III. Geological Society of America.Google Scholar
  48. Price, R.M., P.K. Swart, and J.W. Fourgurean. 2006. Coastal groundwater discharge—an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569: 23–26.CrossRefGoogle Scholar
  49. Rejmánková, E., and J. Komárková. 2000. A function of cyanobacterial mats in phosphorus-limited tropical wetlands. Hydrobiologia 431: 135–153. doi: 10.1023/A:1004011318643.CrossRefGoogle Scholar
  50. Rezaei, M., E. Sanz, E. Raeisi, C. Ayora, E. Vázquez-Suñé, and J. Carrera. 2005. Reactive transport modeling of calcite dissolution in the fresh-salt water mixing zone. Journal of Hydrology 311: 282–298. doi: 10.1016/j.jhydrol.2004.12.017.CrossRefGoogle Scholar
  51. Salinas-Prieto, J. C., J. M. Escobar, E. Sanchez-Rojas, C. Diaz-Salgado, A. de la Calleja, D. Barajas-Nigoche, and E. Salgado-Dorantes. 2007. Carta geológica de MéxicoGoogle Scholar
  52. Sanford, W. E. and L. F. Konikow. 1989. Porosity development in coastal carbonate aquifers. Geology. 17: 249–252, doi: 10.1130/0091-7613(1989)017<0249:PDICCA>2.3.CO;2.
  53. Santos, I.R., R.N. Peterson, B.D. Eyre, and W.C. Burnett. 2010. Significant lateral inputs of fresh groundwater into a stratified tropical estuary: evidence from radon and radium isotopes. Marine Chemistry 121: 37–48. doi: 10.1016/j.marchem.2010.03.003.CrossRefGoogle Scholar
  54. Sherman, R.E., T.J. Fahey, and R.W. Howarth. 1998. Soil-plant interaction in neotropical mangrove forest: Iron, phosphorus and sulfur dynamics. Oecologia 115: 553–563.Google Scholar
  55. Short, F., W. Dennison, and D. Capone. 1990. Phosphorus-limited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Marine Ecology Progress Series 62: 169–174.CrossRefGoogle Scholar
  56. Smart, P.L., J.M. Dawans, and F. Whitaker. 1988. Carbonate dissolution in a modern mixing zone. Nature 335: 811–813.CrossRefGoogle Scholar
  57. Solórzano, L., and J.H. Sharp. 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural water. Limnology and Oceanography 24(4): 754–758. doi: 10.4319/lo.1980.25.4.0754.
  58. Taylor, R., B. Kelbe, S. Haldorsen, G. Botha, B. Wejden, L. Været, and M. Simonsen. 2006. Groundwater-dependent ecology of the shoreline of the subtropical Lake St Lucia estuary. Environmental Geology 49: 586–600. doi: 10.1007/s00254-005-0095-y.CrossRefGoogle Scholar
  59. Valdes, D.S., and E. Real. 2004. Nitrogen and phosphorus in water and sediments at Ria Lagartos coastal lagoon, Yucatan Gulf of Mexico. Indian Journal of Marine Sciences. 33: 338–345.Google Scholar
  60. Vervier, P., L. Roques, M. A. Baker, F. Garabetian and P. Auriol. 2002. Biodegradation of dissolved free simple carbohydrates in surface, hyporheic and riparian waters of a large river. 153: 595–604.Google Scholar
  61. Vulava, V. M., C. G. Garrett, C. L. Ginnn and T. J. Callahan. 2008. Application of geochemical end-member mixing analysis to delineate water sources in a lowland watershed. Proceedings of the 2008 South Carolina Water Resources Conference. 1–4Google Scholar
  62. Ward, W.C. 1985. Quaternary geology of northeastern Yucatán Peninsula. In Geology and hydrogeology of Northeastern Yucatán and Quaternary Geology of Northeastern Yucatan. 23–95, ed. W.C. Ward, A.E. Weidie, and W. Back, 23–95. New Orleans, LA: New Orleans Geological Society.Google Scholar
  63. Ward, W.C., G. Keller, W. Stinnesbeck, and T. Adatte. 1995. Yucatán subsurface stratigraphy: implications and constraints for the Chicxulub impact. Geology 23: 873–876. doi: 10.1130/0091-7613(1995)023<0873:YNSSIA>2.3.CO;2.CrossRefGoogle Scholar
  64. Wigley, T.M.L., and L.N. Plummer. 1976. Mixing of carbonate waters. Geochimica et Cosmochimica Acta 40: 989–995. doi: 10.1016/0016-7037(76)90041-7.CrossRefGoogle Scholar
  65. Zaldívar-Jiménez, M.A., J.A. Herrera-Silveira, C. Teutli-Hernández, F.A. Comín, J.L. Andrade, C.C. Molina, and R.P. Ceballos. 2010. Conceptual framework for mangrove restoration in the Yucatán Peninsula. Ecological Restoration. Ecological Restoration. 28(3): 333–342.CrossRefGoogle Scholar
  66. Zapata-Rios, X., and R.M. Price. 2012. Estimates of groundwater discharge to a coastal wetland using multiple techniques: Taylor Slough, Everglades National Park USA. Hydrologeology. 20: 1651–1668.CrossRefGoogle Scholar
  67. Zhang, J., and X. Huang. 2011. Effect of temperature and salinity on phosphate sorption on marine sediments. Environmental Science and Technology 45: 6831–6837. doi: 10.1021/es200867p.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • David Lagomasino
    • 1
    • 2
    • 6
  • René M. Price
    • 1
    • 2
  • Jorge Herrera-Silveira
    • 3
  • Fernando Miralles-Wilhelm
    • 1
  • Gonzalo Merediz-Alonso
    • 4
  • Yadira Gomez-Hernandez
    • 5
  1. 1.Department of Earth and EnvironmentFlorida International UniversityMiamiUSA
  2. 2.Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  3. 3.CINVESTAV-IPNUnidad MéridaMéridaMexico
  4. 4.Amigos de Sian Ka’anCancúnMexico
  5. 5.Comisión Nacional de Áreas Naturales ProtegidasCancúnMexico
  6. 6.Universities Space Research AssociationNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations