Estuaries and Coasts

, Volume 38, Issue 3, pp 846–853 | Cite as

Strong Sensitivity of Red Sea Zooplankton to UV-B Radiation

  • Ali M. Al-Aidaroos
  • Mohsen M. O. El-Sherbiny
  • Sathianeson Satheesh
  • Gopikrishna Mantha
  • Susana Agustī
  • Beatriz Carreja
  • Carlos M. DuarteEmail author


The impacts of UV-B radiation to Red Sea coastal zooplankton was assessed experimentally at the time (May/June) of peak UV-B radiation, using the most abundant zooplankton species in the community (eight copepod genera, a cladoceran, an ostracod, a cumacean, and two meroplankton, including crab zoeae and megalopa). Mortality rates increased greatly in the presence of ambient UV-B radiation for all species tested except for Labidocera, Macrosetella, and the crab megalopa larvae. Mortality rates declined, on average, threefold when UV-B radiation was removed. These results provide evidence that Red Sea zooplankton are highly vulnerable to ambient levels of UV-B radiation.


UV-B impacts Copepods Holoplankton Meroplankton Red Sea 



This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University (grant no. 1-150/1433 HiCi). The authors, therefore, acknowledge with thanks the DSR technical and financial support. We thank Mr. Muaadh Al-Nuwarah, Mr. Ahmed Al-Haj, and Mr. Reny Devassy for their help in the field and the laboratory. We also thank Dr. Sambhu Chithambaran for providing facilities in the fish farm and Mr. Salman A. Al-Ahmadi and Mr. Bandar Al-Shareef for logistic assistance.


  1. Al-Shaaln, F.F., M.A. Bakrman, A.M. Ibrahim, and A.S. Aljoudi. 2011. Prevalence and causes of visual impairment among Saudi adults attending primary health care centers in northern Saudi Arabia. Annals of Saudi Medicine 31: 473.CrossRefGoogle Scholar
  2. Bekki, S., A. Rap, V. Poulain, S. Dhomse, M. Marchand, F. Lefevre, P.M. Forster, S. Szopa, and M.P. Chipperfield. 2013. Climate impact of stratospheric ozone recovery. Geophysical Research Letters 40: 2796–2800.CrossRefGoogle Scholar
  3. Bethoux, J.P. 1988. Red Sea geochemical budgets and exchanges with the Indian Ocean. Marine Chemistry 24: 83–92.CrossRefGoogle Scholar
  4. Boelen, P., A.F. Post, M.J.W. Veldhuis, and A.G.J. Buma. 2002. Diel patterns of UV-BR-induced DNA damage in picoplankton size fractions from the Gulf of Aqaba, Red Sea. Microbial Ecology 44: 164–174.CrossRefGoogle Scholar
  5. Bollens, S.M., and B.W. Frost. 1990. UV light and vertical distribution of the marine planktonic copepod Acartia hudsonica Pinhey. Journal of Experimental Marine Biology and Ecology 137: 89–93.CrossRefGoogle Scholar
  6. Boyce, D.G., M.R. Lewis, and B. Worm. 2010. Global phytoplankton decline over the past century. Nature 466: 591–596.CrossRefGoogle Scholar
  7. Browman, H.I., C.A. Rodriquez, F. Beland, J.J. Cullen, R.F. Davis, J.H.M. Kouwenberg, P.S. Kuhn, B. McArthur, J.A. Runge, J.-F. St-Pierre, and R.D. Vetter. 2000. Impact of ultraviolet radiation on marine crustacean zooplankton and ichthyoplankton: a synthesis of results from the estuary and Gulf of St. Lawrence, Canada. Marine Ecology-Progress Series 199: 293–311.CrossRefGoogle Scholar
  8. Browman, H.I., J.F. St-Pierre, and P. Kuhn. 2003. Dose and dose-rate dependency in the mortality response of Calanus finmarchicus embryos exposed to ultraviolet radiation. Marine Ecology-Progress Series 247: 297–302.CrossRefGoogle Scholar
  9. Burks, R.L., D.M. Lodge, E. Jeppesen, and T.L. Lauridsen. 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.CrossRefGoogle Scholar
  10. Cabrera, S., M. López, and B. Tartarotti. 1997. Phytoplankton and zooplankton response to ultraviolet radiation in a high-altitude Andean lake: short-versus long-term effects. Journal of Plankton Research 19: 1565–1582.CrossRefGoogle Scholar
  11. Chalker-Scott, L. 1995. Survival and Sex-ratios of the intertidal copepod, Tigriopus-californicus, following ultraviolet-B (290–320 Nm) radiation exposure. Marine Biology 123: 799–804.CrossRefGoogle Scholar
  12. Damkaer, D.M., D.B. Dey, G.A. Heron, and E.F. Prentice. 1980. Effects of UV-B radiation on near-surface zooplankton of Puget sound. Oecologia 44: 149–158.CrossRefGoogle Scholar
  13. Dishon, G., Z. Dubinsky, T. Caras, E. Rahav, E. Bar-Zeev, Y. Tzubery, and D. Iluz. 2012. Optical habitats of ultraphytoplankton groups in the Gulf of Eilat (Aqaba), Northern Red Sea. International Journal of Remote Sensing 33: 2683–2705.CrossRefGoogle Scholar
  14. Dunne, R.P. 2010. Synergy or antagonism—interactions between stressors on coral reefs. Coral Reefs 29: 145–152.CrossRefGoogle Scholar
  15. Elani, U.A. 2007. Distribution of ultraviolet solar radiation at Riyadh region, Saudi Arabia. Environmental Monitoring and Assessment 124: 235–241.CrossRefGoogle Scholar
  16. Elhadidy, M.A., D.Y. Abdel-Nabi, and P.D. Kruss. 1990. Ultraviolet solar radiation at Dhahran, Saudi Arabia. Solar Energy 44: 315–319.CrossRefGoogle Scholar
  17. Hansson, L.A., and S. Hylander. 2009. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochemical & Photobiological Sciences 8: 1266–1275.CrossRefGoogle Scholar
  18. Hansson, L.A., S. Hylander, and R. Sommaruga. 2007. Escape from UV threats in zooplankton: a cocktail of behavior and protective pigmentation. Ecology 88: 1932–1939.CrossRefGoogle Scholar
  19. Hegglin, M.I., and T.G. Shepherd. 2009. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nature Geoscience 2: 687–691.CrossRefGoogle Scholar
  20. Herman, J.R. 2010. Global increase in UV irradiance during the past 30 years (1979–2008) estimated from satellite data. Journal of Geophysical Research 115(D4): D04203.CrossRefGoogle Scholar
  21. Hovel, K.A., and S.G. Morgan. 1999. Susceptibility of estuarine crab larvae to ultraviolet radiation. Journal of Experimental Marine Biology and Ecology 237: 107–125.CrossRefGoogle Scholar
  22. Hylander, S., J.C. Grenvald, and T. Kiørboe. 2013. Fitness costs and benefits of ultraviolet radiation exposure in marine pelagic copepods. Functional Ecology. doi: 10.1111/1365-2435.12159.Google Scholar
  23. Irwin, A.J., and M.J. Oliver. 2009. Are ocean deserts getting larger? Geophysical Research Letters 36: L18609.CrossRefGoogle Scholar
  24. Khogali, A., and O.F. Al-Bar. 1992. A study of solar ultraviolet radiation at Makkah solar station. Solar Energy 48: 79–87.CrossRefGoogle Scholar
  25. Kouwenberg, J.H.M., H.I. Browman, J.A. Runge, J.J. Cullen, R.F. Davis, and J.-F. St-Pierre. 1999. Biological weighting of ultraviolet (280–400 nm) induced mortality in marine zooplankton and fish. II. Calanus finmarchicus (Copepoda) eggs. Marine Biology 134: 285–293.CrossRefGoogle Scholar
  26. Kroeker, K.J., R.L. Kordas, R. Crim, I.E. Hendriks, L. Ramajo, G.S. Singh, C.M. Duarte, and J.-P. Gattuso. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884–1896.CrossRefGoogle Scholar
  27. Lacuna, D.G., and S.-I. Uye. 2001. Influence of mid-ultraviolet (UVB) radiation on the physiology of the marine planktonic copepod Acartia omorii and the potential role of photoreactivation. Journal of Plankton Research 23: 143–156.CrossRefGoogle Scholar
  28. Llabrés, M., and S. Agusti. 2006. Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities. Limnology and Oceanography 51: 21–29.CrossRefGoogle Scholar
  29. Llabrés, M., S. Agustí, P. Alonso-Laita, and G.J. Herndl. 2010. Synechococcus and Prochlorococcus cell death induced by UV radiation and the penetration of lethal UVR in the Mediterranean Sea. Marine Ecology Progress Series 399: 27–37.CrossRefGoogle Scholar
  30. Llabrés, M., S. Agustí, M. Fernández, A. Canepa, F. Maurin, F. Vidal, and C.M. Duarte. 2013. Impact of elevated UV-B radiation on marine biota: a meta-analysis. Global Ecology and Biogeography 22: 131–144.CrossRefGoogle Scholar
  31. Ma, Z., L.I. Wei, and G.A.O. Kunshan. 2010. Horizontal migration of Acartia pacifica Steuer (copepoda) in response to UV-radiation. Journal of Photochemistry and Photobiology B: Biology 101: 233–237.CrossRefGoogle Scholar
  32. Ma, Z., W. Li, and K. Gao. 2013. Impacts of UV radiation on respiration, ammonia excretion, and survival of copepods with different feeding habits. Hydrobiologia 701: 209–218.CrossRefGoogle Scholar
  33. Malloy, K.D., M.A. Holman, D. Mitchell, and H.W. Detrich. 1997. Solar UVB-induced DNA damage and photoenzymatic DNA repair in Antarctic zooplankton. Proceedings of the National Academy of Sciences 94: 1258–1263.CrossRefGoogle Scholar
  34. McKinlay, A.F., and B.L. Diffey. 1987. A reference action spectrum for ultra-violet induced erythema in human skin. In Human exposure to ultraviolet radiation: risks and regulations, ed. W.F. Passchier and B.F.M. Bosnajakovic, 83–87. Amsterdam: Elsevier.Google Scholar
  35. Moeller, R.E., S. Gilroy, C.E. Williamson, G. Grad, and R. Sommaruga. 2005. Dietary acquisition of photoprotective compounds (mycosporine-like amino acids, carotenoids) and acclimation to ultraviolet radiation in a freshwater copepod. Limnology and Oceanography 50: 427–439.CrossRefGoogle Scholar
  36. Mojib, N., M. Amad, M. Thimma, N. Aldanondo, M. Kumaran, and X. Irigoien. 2014. Carotenoid metabolic profiling and transcriptome‐genome mining reveal functional equivalence among blue‐pigmented copepods and appendicularia. Molecular ecology 23: 2740–2756.Google Scholar
  37. Morgan, S.G., and J.H. Christy. 1996. Survival of marine larvae under the countervailing selective pressures of photodamage and predation. Limnology and Oceanography 41: 498–504.CrossRefGoogle Scholar
  38. Polovina, J.J., E.A. Howell, and M. Abecassis. 2008. Ocean’s least productive waters are expanding. Geophysical Research Letters 35: L03618.CrossRefGoogle Scholar
  39. Raitsos, D.E., I. Hoteit, P.K. Prihartato, T. Chronis, G. Triantafyllou, and Y. Abualnaja. 2011. Abrupt warming of the Red Sea. Geophysical Research Letters 38: DOI:  10.1029/2011GL047984.
  40. Rhode, S.C., M. Pawlowski, and R. Tollrian. 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412: 69–72.CrossRefGoogle Scholar
  41. Schlichter, D., H.W. Fricke, and W. Weber. 1986. Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Marine Biology 91: 403–407.CrossRefGoogle Scholar
  42. Signorini, S.R., and C.R. McClain. 2012. Subtropical gyre variability as seen from satellites. Remote Sensing Letters 3: 471–479.CrossRefGoogle Scholar
  43. Speekmann, C.L., S.M. Bollens, and S.R. Avent. 2000. The effect of ultraviolet radiation on the vertical distribution and mortality of estuarine zooplankton. Journal of Plankton Research 22: 2325–2350.CrossRefGoogle Scholar
  44. Tedetti, M., and R. Sempéré. 2006. Penetration of ultraviolet radiation in the marine environment. A review. Photochemistry and Photobiology 82: 389–397.CrossRefGoogle Scholar
  45. Weatherhead, E.C., and S.B. Andersen. 2006. The search for signs of recovery of the ozone layer. Nature 441: 39–45.CrossRefGoogle Scholar
  46. Williamson, C.E., H.E. Zagarese, P.C. Schulze, B.R. Hargreaves, and J. Seva. 1994. The impact of short-term exposure to UV-B radiation on zooplankton communities in north temperate lakes. Journal of Plankton Research 16: 205–218.CrossRefGoogle Scholar
  47. Williamson, C.E., J.M. Fischer, S.M. Bollens, E.P. Overholt, and J.K. Breckenridge. 2011. Toward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnology and Oceanography 56: 1603–1623.CrossRefGoogle Scholar
  48. Yu, J., G. Yang, and J. Tian. 2009. Effects of UV-B radiation on ingestion, fecundity, population dynamics and antioxidant enzyme activities of Schmackeria inopinus(Copepoda Calanoida). Journal of Experimental Marine Biology and Ecology 381: 74–81.CrossRefGoogle Scholar

Copyright information

© Coastal and Estuarine Research Federation 2014

Authors and Affiliations

  • Ali M. Al-Aidaroos
    • 1
  • Mohsen M. O. El-Sherbiny
    • 1
    • 2
  • Sathianeson Satheesh
    • 1
  • Gopikrishna Mantha
    • 1
  • Susana Agustī
    • 3
    • 4
  • Beatriz Carreja
    • 4
  • Carlos M. Duarte
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Marine Biology, Faculty of Marine SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Marine Science Department, Faculty of ScienceSuez Canal UniversityIsmailia-41522Egypt
  3. 3.The UWA Oceans Institute and School of Plant BiologyUniversity of Western AustraliaCrawleyAustralia
  4. 4.Department of Global Change ResearchIMEDEA (CSIC-UIB) Instituto Mediterráneo de Estudios AvanzadosEsporlesSpain

Personalised recommendations